REFRIGERATION AND AIR CONDITIONING TECHNOLOGY

EIGHTH EDITION

JOHN TOMCZYK EUGENE SILBERSTEIN BILL WHITMAN BILL JOHNSON

EIGHTH EDITION

REFRIGERATION AND AIR CONDITIONING TECHNOLOGY

JOHN A. TOMCZYK

EUGENE SILBERSTEIN

WILLIAM C. WHITMAN

WILLIAM M. JOHNSON

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit <u>www.cengage.com/highered</u> to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Refrigeration and Air Conditioning Technology, Eighth Edition

John A. Tomczyk, Eugene Silberstein, William C. Whitman, William M. Johnson

Vice President, GM Skills & Product Planning: Dawn Gerrain

Product Team Manager: James DeVoe

Senior Director Development: Marah Bellegarde Senior Product Development Manager: Larry Main

Senior Content Developer: John Fisher

Product Assistant: Jason Koumourdous

Vice President Marketing Services: Jennifer Ann Baker

Marketing Manager: Scott Chrysler

Senior Production Director: Wendy A. Troeger

Production Director: Andrew Crouth

Senior Content Project Manager: Kara A. DiCaterino

Senior Art Director: Jack Pendleton

Technology Project Manager: Joe Pliss Cover Image: Biwa Studio/Stone/Getty Images

Interior Design Image: ©iStockphoto.com/simon2579

© 2017, 2003 Cengage Learning WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions** Further permissions questions can be e-mailed to **permissionrequest@cengage.com**

Library of Congress Control Number: 2015956456

ISBN: 978-1-305-57829-6

Cengage Learning

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: **international.cengage.com/region**

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers' use of, or reliance upon, this material.

BRIEF CONTENTS

SECTION 1: Theory of Heat

Introduction		2
Unit 1	Heat, Temperature, and Pressure	16
Unit 2	Matter and Energy	30
Unit 3	Refrigeration and Refrigerants	39

SECTION 2: Safety, Tools and Equipment, and Shop Practices

Unit 4	General Safety Practices	86
Unit 5	Tools and Equipment	104
Unit 6	Fasteners	139
Unit 7	Tubing and Piping	155
Unit 8	Leak Detection, System Evacuation,	
	and System Cleanup	187
Unit 9	Refrigerant and Oil Chemistry and	
	Management—Recovery, Recycling,	
	Reclaiming, and Retrofitting	223
Unit 10	System Charging	267
Unit 11	Calibrating Instruments	284

SECTION 3: Automatic Controls

76
26
39
70
74

SECTION 4: Electric Motors

Unit 17 Types of Electric Motors	418
Unit 18 Application of Motors	450
Unit 19 Motor Controls	468
Unit 20 Troubleshooting Electric Motors	479

SECTION 5: Commercial Refrigeration

Unit 21 Evaporators and the Refrigeration System	498
Unit 22 Condensers	523
Unit 23 Compressors	558
Unit 24 Expansion Devices	594
Unit 25 Special Refrigeration System Components	621
Unit 26 Applications of Refrigeration Systems	668
Unit 27 Commercial Ice Machines	704
Unit 28 Special Refrigeration Applications	752

Unit 29 Troubleshooting and Typical Operating	
Conditions for Commercial Refrigeration	770

SECTION 6: Air-Conditioning (Heating and Humidification)

Unit 30 Electric Heat	818
Unit 31 Gas Heat	836
Unit 32 Oil Heat	910
Unit 33 Hydronic Heat	969
Unit 34 Indoor Air Quality	1025

SECTION 7: Air-Conditioning (Cooling)

Unit 35 Comfort and Psychrometrics Unit 36 Refrigeration Applied to Air-Conditioning Unit 37 Air Distribution and Balance Unit 38 Installation	1048 1072 1093 1143
Unit 39 Residential Energy Auditing	1167
Unit 40 Typical Operating Conditions	1218
Unit 41 Troubleshooting	1233

SECTION 8: All-Weather Systems

Unit 42 Heat Gains and Heat Losses in Structures	1266
Unit 43 Air Source Heat Pumps	1285
Unit 44 Geothermal Heat Pumps	1335

SECTION 9: Domestic Appliances

Unit 45 Domestic Refrigerators and Freezers	1372
Unit 46 Room Air Conditioners	1433

SECTION 10: Commercial Air-Conditioning and Chilled-Water Systems

Appendix B	(Stoves and Fireplace Inserts) Temperature Conversion Chart	1608 1617
Appendix A	Alternative Heating	
Refi	nmercial, Packaged Rooftop, Variable rigerant Flow, and Variable Air Volume rems	1563
Trou Air-	ubleshooting of Chilled-Water Conditioning Systems	1536
	oling Towers and Pumps eration, Maintenance, and	1509
0	h-Pressure, Low-Pressure, Absorption Chilled-Water Systems	1464

CONTENTS

Preface	xiii
New in This Edition	xiv
How to Use This Text and Supplementary Materials	XV
Support Materials	xviii
About the Authors	XX
Acknowledgments	xxi

SECTION 1: Theory of Heat

Introdu	ction		2
	Greer Histor Caree Techr Progr Natio	ry of Refrigeration and Air-Conditioning (Cooling) Awareness ry of Home and Commercial Heating er Opportunities nician Certification Programs ammatic Accreditation nal Skill Standards omer Relations and Technician Soft Skills	2 6 8 9 10 11 12
Unit 1	Heat	, Temperature, and Pressure	16
	1.8 1.9 1.10	Pressure Atmospheric Pressure	16 17 18 20 20 21 22 24 24 24 25 26 27
Unit 2	Matt	er and Energy	30
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14	Specific Gravity Specific Volume Gas Laws Energy Conservation of Energy Energy Contained in Heat Energy in Magnetism Purchase of Energy Energy Used as Work Power	30 31 31 32 34 35 35 35 36 36 36 36 36 37
Unit 3	Refri	geration and Refrigerants	39
	3.1 3.2 3.3 3.4 3.5	Introduction to Refrigeration Refrigeration Rating Refrigeration Equipment The Refrigeration Process Temperature and Pressure Relationship	39 40 40 41 43

3.6	Refrigeration Components	48
3.7	The Evaporator	48
3.8	The Compressor	50
3.9	The Condenser	52
3.10	The Refrigerant Metering Device	54
3.11	Matching Refrigeration Systems	
	and Components	56
3.12	Refrigerants	58
3.13	Refrigerants Must Be Safe	60
3.14	Refrigerants Must Be Detectable	60
3.15	The Boiling Point of the Refrigerant	62
3.16	Pumping Characteristics	62
3.17	Popular Refrigerants and their Important	
	Characteristics	62
3.18	Refrigerant Cylinder Color Codes	62
3.19	Recovery, Recycling, or Reclaiming	
	of Refrigerants	65
3.20	Plotting the Refrigerant Cycle	65
3.21	Plotting the Refrigerant Cycle for Blends	
	with Noticeable Temperature Glide	
	(Zeotropic Blends)	79
	· · · · · · · · · · · · · · · · · · ·	

SECTION 2: Safety, Tools and Equipment, and Shop Practices

Unit 4	Gen	eral Safety Practices	86
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Pressure Vessels and Piping Electrical Hazards Heat Cold Mechanical Equipment Moving Heavy Objects Refrigerants in Your Breathing Space Using Chemicals	86 90 95 96 96 98 98 101
Unit 5	Tool	s and Equipment	104
	5.1 5.2 5.3 5.4	General Tools Specialized Hand Tools Tubing Tools Specialized Service and Installation	104 110 112
	5.5 5.6 5.7	Équipment Refrigerant Leak Detectors	117 120 122
	0.7	for Specialized Needs	131
Unit 6	Fast	eners	139
	6.1 6.2 6.3 6.4 6.5		139 140 141 146 147
Unit 7	Tubi	ng and Piping	155
	7.1 7.2 7.3 7.4	Purpose of Tubing and Piping Types and Sizes of Tubing Tubing Insulation Line Sets	155 155 156 158

	7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19	Swaging Techniques Compression Fittings Steel and Wrought Iron Pipe	158 159 161 162 168 169 171 172 175 176 177 178 182 182 182
Unit 8		Detection, System Evacuation, system Cleanup	187
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Leaks Basic Refrigerant Leak Detection Advanced Leak Detection Standing Pressure Test Leak Detection Tips Repairing Leaks System Evacuation General Evacuation Procedures Cleaning a Dirty System	187 189 191 193 195 198 199 210 218
Unit 9		gerant and Oil Chemistry and gement—Recovery, Recycling,	
		iming, and Retrofitting	223
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12	Refrigerants and the Environment Ozone Depletion Global Warming Refrigerants CFC Refrigerants HCFC Refrigerants HFC Refrigerants Hydrofluoro-Olefin (HFO) Refrigerants Hydrocarbon (HC) Refrigerants Naming Refrigerants Refrigerant Blends Popular Refrigerants and Their	223 224 225 226 227 227 228 228 228 229 233 234
	9.13 9.14 9.15 9.16 9.17 9.18	Compatible Oils Refrigerant Oils and Their Applications Oil Groups Regulations Recover, Recycle, or Reclaim Methods of Recovery Mechanical Recovery Systems	235 240 241 242 243 245 248
	9.19 9.20 9.21 9.22	Recovering Refrigerant from Small Appliances Reclaiming Refrigerant Refrigerant Retrofitting Refrigerants and Tools in the Future	255 258 258 264
Unit 10	Syste	m Charging	267
	10.1 10.2 10.3 10.4 10.5 10.6	Charging a Refrigeration System Vapor Refrigerant Charging Liquid Refrigerant Charging Weighing Refrigerant Using Charging Devices Using Charging Charts	267 267 269 272 273 273

	10.7	Subcooling Charging Method for TXV Systems	277
	10.8	Charging Near-Azeotropic (Zeotropic) Refrigerant Blends	279
Unit 11	Calib	rating Instruments	284
	11.1	Calibration	284
	11.2	Temperature-Measuring Instruments	284
	11.3	Pressure Test Instruments	288
	11.4	Electrical Test Instruments	289
	11.5	Electronic Refrigerant Leak Detection	
		Devices	291
	11.6	Flue-Gas Analysis Instruments	292
	11.7	General Maintenance	293

SECTION 3: Automatic Controls

Unit 12	Basic	Electricity and Magnetism	296
	12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 12.18 12.19 12.20 12.21 12.22	Atomic Structure Movement of Electrons Conductors Insulators Electricity Produced from Magnetism Current	296 297 298 298 299 299 299 300 304 304 305 306 305 306 307 308 310 310 314 315 316 319
Unit 13	Introd	duction to Automatic Controls	326
	13.4	Types of Automatic Controls Devices that Respond to Thermal Change The Bimetal Device Control by Fluid Expansion The Thermocouple Electronic Temperature-Sensing Devices	326 326 328 331 333 336
Unit 14		matic Control Components	
		Applications	339
	14.8 14.9	Sensing the Temperature of Solids Measuring the Temperature of Fluids Pressure-Sensing Devices Pressure Transducers High-Pressure Controls	339 341 345 347 349 352 356 357 358 359

	14.12 14.13 14.14 14.15 14.16 14.17 14.18	Air Pressure Controls Gas Pressure Switches Switchless Devices That Control Fluid Flow Water Pressure Regulators Gas Pressure Regulators Mechanical and Electromechanical Controls Maintenance of Mechanical Controls Maintenance of Electromechanical Controls Service Technician Calls	361 361 362 363 363 364 364 365
Unit 15	Trouk	leshooting Basic Controls	370
	15.1		370
	15.2	5	371
	15.3	Troubleshooting a Complex Circuit	372
	15.4		375
	15.5	5	0,0
		Low-Voltage Circuit	377
	15.6	Troubleshooting Voltage in the	0
		Low-Voltage Circuit	378
	15.7		378
	15.8	5	385
	15.9	Service Technician Calls	387
Unit 16	Adva	nced Automatic Controls—Direct Dig	gital
		rols (DDCs) and Pneumatics	394
	16.1	Control Applications	394
	4 / 0		201

10.1		5/4
16.2	Types of Control Systems	394
16.3	Pneumatic Controls	396
16.4	Cleaning and Drying Control Air	397
16.5	Control Components	398
16.6	Direct Digital Controls (DDCs)	403
16.7	Residential Electronic Controls	410

SECTION 4: Electric Motors

Unit

Types	of Electric Motors	418
17.1	Uses of Electric Motors	418
17.2	Parts of an Electric Motor	418
17.3	Electric Motors and Magnetism	419
17.4	Determining a Motor's Speed	420
		421
		421
17.7	Electrical Power Supplies	422
		424
		424
		424
17.11	The Electronic Relay	426
		426
		427
		427
17.15	Shaded-Pole Motors	429
		429
17.17	Single-Phase Hermetic Motors	431
17.18	The Potential Relay	432
		434
		434
17.21	Positive Temperature Coefficient	
	Resistor (PTCR)	435
17.22	Troubleshooting the PTCR	436
17.23	Two-Speed Compressor Motors	436
		437
17.25	Three-Phase Compressor Motors	437
	17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.7 17.8 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 17.18 17.19 17.20 17.21 17.22 17.23 17.24	Types of Electric Motors17.1Uses of Electric Motors17.2Parts of an Electric Motor17.3Electric Motors and Magnetism17.4Determining a Motor's Speed17.5Start Windings17.6Starting and Running Characteristics17.7Electrical Power Supplies17.8Single-Phase Open Motors17.9Split-Phase Motors17.10The Centrifugal Switch17.11The Electronic Relay17.12Capacitor-Start Motors17.13Capacitor-Start, Capacitor-Run Motors17.14Permanent Split-Capacitor Motors17.15Shaded-Pole Motors17.16Three-Phase Motors17.17Single-Phase Hermetic Motors17.18The Potential Relay17.19Troubleshooting17.20The Current Relay17.21Positive Temperature Coefficient Resistor (PTCR)17.22Troubleshooting the PTCR17.23Two-Speed Compressor Motors17.24Special Application Motors17.25Three-Phase Compressor Motors

	17.26	Variable-Speed Motors	438
	17.27	DC Converters (Rectifiers)	441
	17.28	Inverters and Variable Frequency	
	17.00	Drives (VFDs)	443
		Electronically Commutated Motors (ECMs) Cooling Electric Motors	446 447
	17.50	Cooling Electric Motors	447
Unit 18	Appli	cation of Motors	450
	18.1	Motor Applications	450
	18.2	The Power Supply	450
	18.3	Electric-Motor Working Conditions	457
	18.4	Insulation Type or Class	458
	18.5	Types of Bearings	458
	18.6	Motor Mounting Characteristics	460
	18.7	Motor Drives	462
Unit 19	Moto	r Controls	468
	19.1	Introduction to Motor Control Devices	468
	19.2	Full-Load and Locked-Rotor Amperage	469
	19.3	The Relay	469
	19.4	The Contactor	470
	19.5	Motor Starters	472
	19.6	Motor Protection	473
	19.7		474
	19.8		474
		National Electrical Code [®] Standards	476
		Temperature-Sensing Devices	476
		Magnetic Overload Devices	477
	19.12	Restarting the Motor	477
Unit 20	Troub	leshooting Electric Motors	479
	20.1	Motor Troubleshooting	479
	20.2	Mechanical Motor Problems	479
	20.3	Removing Drive Assemblies	480
	20.4	Belt Tension	481
	20.5	Pulley Alignment	482
	20.6	Electrical Problems	482
	20.7	Open Windings	482
	20.8	Shorted Motor Windings	484
	20.9	Short Circuit to Ground (Frame)	485
		Single-Phase Motor Starting Problems	488
		Checking Capacitors	488
		Identification of Capacitors	490

20.13 Wiring and Connectors49120.14 Troubleshooting Hermetic Motors49220.15 Service Technician Calls492

SECTION 5: Commercial Refrigeration

Unit 21 Evaporators and the Refrigeration System 498

21.1	Refrigeration	498
21.2	Temperature Ranges of Refrigeration	499
21.3	The Evaporator	499
21.4	Boiling and Condensing	500
21.5	The Evaporator and Boiling Temperature	500
21.6	Removing Moisture	500
21.7	Heat Exchange Characteristics	
	of the Evaporator	500
21.8	Types of Évaporators	503
21.9	Évaporator Évaluation	509
21.10	Latent Heat in the Evaporator	511
21.11	The Flooded Evaporator	511

	21.13	Dry-Type Evaporator Performance Evaporator Superheat Hot Pulldown (Excessively Loaded	511 512
	21.15 21.16	Evaporator) Pressure Drop in Evaporators Liquid Cooling Evaporators (Chillers) Evaporators for Low-Temperature	512 513 515
		Applications Defrost of Accumulated Moisture Evaporator and Defrost Efficiency	516 517
		Controller	518
Unit 22			523
	22.2 22.3 22.4 22.5 22.6 22.7 22.8	Tube-Within-a-Tube Condensers Mineral Deposits Cleanable Tube-Within- a-Tube Condensers Shell-and-Coil Condensers Shell-and-Tube Condensers Wastewater Systems Refrigerant-to-Water Temperature	523 523 524 524 526 527 528 528
	22.11 22.12 22.13 22.14	Relationship for Wastewater Systems Recirculating Water Systems Cooling Towers Natural-Draft Towers Forced- or Induced-Draft Towers Evaporative Condensers	531 533 533 533 534 535
	22.15	Air-Cooled Condensers	538 541
	22.10	High-Efficiency Condensers The Condenser and Low Ambient	541
		Conditions	542
		Head Pressure Controls	544
	22.19	Using the Condenser Superheat Heat Reclaim	554 554
		Floating Head Pressures	554
	22.22	Service Technician Calls	555
Unit 23	Comp	pressors	558
	23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9	The Function of the Compressor Types of Compressors Reciprocating Compressor Components Belt-Drive Mechanism Characteristics Direct-Drive Compressor Characteristics Reciprocating Compressor Efficiency Discus Valve Design New Technology in Compressors Liquid in the Compressor Cylinder System Maintenance and Compressor Efficiency	558 560 565 575 576 576 578 579 588 590
Unit 24	Expai	nsion Devices	594
	24.8 24.9 24.10 24.11 24.12	The Valve' Body The Diaphragm Needle and Seat The Spring The Sensing Bulb and Transmission Tube	594 594 596 597 598 600 601 601 601 603 603 603

	24.14	Example of a TXV Functioning with an Inte	rnal
		Equalizer	604
	24.15	TXV Functioning with External Equalizers	605
		TXV Response to Load Changes	609
		Selection of TXV Valves	609
		Balanced-Port TXV	609
		The Pressure-Limiting TXV	609
		Servicing the TXV Installing the Sensing Element	609 610
		Step-Motor Expansion Valves	611
		Algorithms and PID Controllers	614
		The Automatic Expansion Valve	615
		Automatic Expansion Valve Response	0.0
		to Load Changes	616
	24.26	Special Considerations for the TXV	
		and AXV	616
	24.27	The Capillary Tube Metering Device	617
	24.28	Operating Charge for the Capillary	
		Tube System	618
Unit 25	Speci	al Refrigeration System Components	621
01111 20			
	25.1	The Four Basic Components Mechanical Controls	621 621
		Two-Temperature Controls	621
		Evaporator Pressure Control	621
	25.4	Multiple Evaporators	624
	25.6	Electric Evaporator Pressure-Regulating	021
	2010	Valve	624
	25.7	Crankcase Pressure Regulator	625
	25.8	Adjusting the CPR Valve	627
		Relief Valves	627
		Fan-Cycling Head Pressure Controls	628
	25.11	Fan Speed Control for Controlling	
	05 40	Head Pressure	629
	25.12	Air Volume Control for Controlling	(20
	2E 12	Head Pressure	629
	25.13	Condenser Flooding and Condenser Splitting for Controlling Head Pressure	630
	25 14	Electrical Controls	631
		Pressure Switches	633
		Low-Pressure Switch	633
		Low-Pressure Control Applied as a	
		Thermostat	633
	25.18	Automatic Pumpdown Systems	635
	25.19	High-Pressure Control	639
		Low-Ambient Fan Control	639
		Oil Pressure Safety Control	640
		The Defrost Cycle	643
	25.23 25.21	Medium-Temperature Refrigeration	645 645
		Random or Off-Cycle Defrost Planned Defrost	645 645
		Low-Temperature Evaporator Defrost	645
	25.27	Internal Heat Defrost (Hot Gas and	070
	/	Cool Gas Defrost)	646
	25.28	External Heat Defrost	647
	25.29	Defrost Termination and Fan Delay Control	648
	25.30	Refrigeration Accessories	649
		Receivers	649
		The King Valve on the Receiver	650
		Filter Driers	650
	25.34	Refrigerant Check Valves	652
		Refrigerant Sight Glasses	652 652
		Liquid Refrigerant Distributors Heat Exchangers	652 653
		Suction-Line Accumulators	653 654
	_0.00		001

		Suction-Line Filter Driers	656
	25.40	Suction Service Valves	657
		Discharge Service Valves	658
		Refrigeration Line Service Valves	658
	25.43	Diaphragm Valves Ball Valves	658
			658 440
	25.45	Oil Separators Vibration Eliminators	660 661
		Pressure Access Ports	662
		Crankcase Heat	663
		Oil Pumps	664
	25.50	Compressor Oil Check Valve	001
	20100	and Partition Wall	665
Unit 26	Appli	cations of Refrigeration Systems	668
	26.1	Application Decisions	668
	26.2	Reach-in Refrigeration	668
	26.3	Self-Contained Reach-in Fixtures	669
		Individual Condensing Units	671
	26.5	Single-Compressor Applications	
		and Multiple Evaporators	672
	26.6	Parallel Compressor Systems	675
	26.7 26.8	Secondary-Fluid Refrigeration Systems Carbon Dioxide (R-744) Refrigeration	683
		Systems	685
		Pressurized Liquid Systems	689
	26.10	Distributed Refrigeration Systems	691
	26.11	Evaporator Temperature Control	692
	20.12	Interconnecting Piping in Multiple- Evaporator Installations	692
	26 13	Fixture Temperature Control	693
	26.13	The Evaporator and Merchandising	693
	26.14	Chest-Type Display Fixtures	694
	26.16	Refrigerated Shelves	695
	26.17	Closed Chest Fixtures	695
		Controlling Sweating on Fixture Cabinets	696
		Maintaining Store Ambient Conditions	696
	26.20	Walk-in Refrigeration	697
		Knock-Down Walk-in Coolers	697
	26.22	Evaporators in a Walk-in Cooler	698
	26.23	Condensate Removal	698
	26.24	Refrigeration Piping	699
	26.25	Package Refrigeration for Walk-in Coolers	700
		Refrigerated Air Driers	700
Unit 27	Comr	mercial Ice Machines	704
	27.1	Packaged-Type Ice-Making Equipment	704
	27.2	Making Flake Ice	704
	27.3	Making Cube Ice	713
	27.4	Microprocessors	730
	27.5	Water and Ice Quality	735
	27.6 27.7	Package Ice Machine Location	742 742
	27.8	Troubleshooting Ice Makers Service Technician Calls	742 746
Unit 28	Speci	al Refrigeration Applications	752
	28.1	Special Refrigeration Applications	752
	28.2	Transport Refrigeration	752
	28.3	Truck Refrigeration Systems	752
	28.4	Railway Refrigeration	759
	28.5	Extra-Low-Temperature Refrigeration	760
	28.6	Cascade Systems	762
	28.7	Quick-Freezing Methods	762
	28.8	Marine Refrigeration	763
	28.9	Air Cargo Hauling	767

Unit 29		leshooting and Typical Operating			
	Cond	itions for Commercial Refrigeration	770		
	29.1	Organized Troubleshooting	770		
	29.2	Troubleshooting High-Temperature			
		Applications	771		
	29.3	Troubleshooting Medium-Temperature			
		Applications	773		
	29.4	Troubleshooting Low-Temperature			
		Applications	774		
	29.5	Typical Air-Cooled Condenser Operating			
		Conditions	774		
	29.6	Calculating the Correct Head Pressure			
		for Air-Cooled Equipment	775		
	29.7	Typical Operating Conditions for			
		Water-Cooled Equipment	776		
	29.8	Typical Operating Conditions for			
		Wastewater Condenser Systems	776		
	29.9	Typical Operating Conditions for			
		Recirculated Water Systems	776		
		Six Typical Problems	778		
		Low Refrigerant Charge	779		
		Refrigerant Overcharge	781		
		Inefficient Evaporator	782		
		Inefficient Condenser	784		
	29.15	Refrigerant Flow Restrictions	786		
	29.16	Inefficient Compressor	789		
	29.17	Compressor Vacuum Test	790		
	29.18	Closed-Loop Compessor Running			
		Bench Test	790		
	29.19	Closed-Loop Compressor Running			
		Field Test	792		
	29.20	Compressor Running Test in the System	792		
	29.21	Diagnostic Chart for Commercial	70 (
		Refrigeration	794		
	29.22	Service Technician Calls	796		

SECTION 6: Air-Conditioning (Heating and Humidification)

Unit 30	Elect	ric Heat	818
	30.1	Introduction	818
	30.2	Portable Electric Heating Devices	818
	30.3		819
	30.4	Electric Baseboard Heating	820
		Unit and Wall Heaters	820
		Electric Hydronic Boilers	820
		Central Forced-Air Electric Furnaces	821
	30.8	Automatic Controls for Forced-Air	
		Electric Furnaces	822
		The Low-Voltage Thermostat	822
		Controlling Multiple Stages	824
		Wiring Diagrams	824
	30.12	Control Circuits for Forced-Air Electric	
		Furnaces	824
		Blower Motor Circuits	826
		Contactors for Controlling Electric Furnaces	830
		Airflow in Electric Furnaces	830
		Diagnostic Chart for Electric Heat	833
	30.17	Service Technician Calls	833
Unit 31	Gas H	leat	836
	31.1	Introduction to Gas-Fired, Forced-Hot-Air	

Furnaces Fired, Forced-Hot-Air

31.2	Types of Furnaces	837
31.3	Gas Fuels	840
31.4	Gas Combustion	841
31.5	Gas Regulators	844
31.6	Gas Valve	845
31.7	Solenoid Valve	845
31.8		845
31.9		846
	Automatic Combination Gas Valve	847
	Manifold	852
	Orifice	852
	Burners	852
	Heat Exchangers	854
	Fan Switch	856
	Limit Switch	858
	Pilots	859
31.18	Safety Devices at the Standing Pilot	860
31.19	Ignition Systems	862
31.20	Flame Rectification	866
31.21	High-Efficiency Gas Furnaces	869
	Electronic Ignition Modules and	
	Integrated Furnace Controllers	873
31.23	Two-Stage Gas Furnaces	878
	Modulating Gas Furnaces	879
	Venting	881
	Gas Piping	884
	Gas Furnace Wiring Diagrams and	001
01.27	Troubleshooting Flowcharts	886
31 28	Troubleshooting the Safety Pilot-Proving	000
51.20	Device—the Thermocouple	888
21 20		000
51.29	Troubleshooting Spark Ignition	000
21 20	and Intermittent Pilot Systems	888
	Combustion Efficiency	897
31.31	Service Technician Calls	903

Unit 32 Oil Heat

	32.1	Introduction to Oil-Fired, Forced-Warm-Air	
		Furnaces	910
	32.2	Physical Characteristics	911
		Fuel Oils	911
	32.4	Oil Storage	914
	32.5	Fuel Oil Supply Systems	916
	32.6	Combustion	921
	32.7	Preparation of Fuel Oil for Combustion	922
	32.8	By-Products of Combustion	923
	32.9	Gun-Type Oil Burners	923
	32.10	Oil Furnace Wiring Diagrams	939
	32.11	Wiring Diagram for the Stack Switch	
		Safety Control	944
	32.12	Wiring Diagram for Cad Cell Primary	
		Control with Intermittent Ignition	945
	32.13	Wiring Diagram for Cad Cell Primary	
		Control with Interrupted Ignition	947
		Combustion Chamber	948
	32.15	Heat Exchanger	950
	32.16	Condensing Oil Furnace	954
		Service Procedures	955
	32.18	Combustion Efficiency	959
	32.19	Diagnostic Chart for Oil Heat	963
	32.20	Service Technician Calls	964
Unit 33	Hydro	onic Heat	969
		Introduction to Hydronic Heating	969
		The Heat Source	970
		The Basic Hydronic System	974

	33.4	The Point of No Pressure Change	980
	33.5		981
	33.6	High-Temperature Hydronic Piping System	s 991
	33.7	Radiant, Low-Temperature Hydronic	
	33.8	Piping Systems Combination (High- and	1003
	00.0	Low-Temperature) Piping Systems	1009
	33.9	Tankless Domestic Hot Water Heaters	1009
		Solar Heating as a Supplemental	
		Heat Source	1010
	33.11	Service Technician Calls	1021
Unit 34	Indoc	or Air Quality	1025
	34.1	Introduction	1025
	34.2	Sources of Indoor Air Pollution	1025
	34.3	Common Pollutants	1027
	34.4	Detecting and Eliminating the Source	
		of Contamination	1032
		Ventilation	1032
		Air Cleaning	1034
		Duct Cleaning	1038
		Air Humidification	1039
		Sizing Humidifiers	1043
		Installation	1043
	34.11	Service, Troubleshooting, and	1010
	24.40	Preventive Maintenance	1043
	34.12	Diagnostic Chart for Filtration and	1011
		Humidification Systems	1044

SECTION 7: Air-Conditioning (Cooling)

Unit 35 Comfort and Psychrometrics 35.1 Comfort Food Energy and the Body 35.2 Heat Transfer to and from the Body 35.3 The Comfort Chart 35.4 35.5 Psychrometrics 35.6 Moisture in Air 35.7 Absolute and Relative Humidity 35.8 Superheated Gases in Air 35.9 Dry-Bulb and Wet-Bulb Temperatures 35.10 Dew Point Temperature 35.11 Enthalpy 35.12 The Psychrometric Chart 35.13 Plotting on the Psychrometric Chart 35.14 Fresh Air, Infiltration, and Ventilation Unit 36 Refrigeration Applied to Air-Conditioning 1072 36.1 Refrigeration 36.2 Structural Heat Gain 36.3 Evaporative Cooling 36.4 Refrigerated Cooling or Air-Conditioning The Evaporator 36.5 The Function of the Evaporator 36.6 36.7 Design Conditions 36.8 Evaporator Application 36.9 The Compressor 36.10 The Reciprocating Compressor

36.11 Compressor Speeds (RPM)

36.13 Compressor Mountings

36.14 The Rotary Compressor

36.15 The Scroll Compressor

36.12 Cooling the Compressor and Motor

ix .

	36.17	The Condenser Expansion Devices	1087 1089
		Air-Side Components Installation Procedures	1089 1089
Unit 37	Air D	istribution and Balance	1093
	37.1	5 1 1	1093
	37.2 37.3		1094 1094
	37.3	The Forced-Air System The Blower	1094
	37.5	System Pressures	1097
	37.6	Air-Measuring Instruments for Duct Systems	1098
	37.7	Types of Fans and Blowers	1099
	37.8	Types of Drive Assemblies	1102
	37.9		1103
		Duct System Standards Duct Materials	1107 1107
		Duct Air Movement	1117
	37.13	Balancing Dampers	1118
		Zoning	1119
		Duct Insulation Blending the Conditioned Air with	1122
	07.10	Room Air	1123
		The Return-Air Duct System	1124
		Sizing Duct for Moving Air	1124 1128
		Measuring Air Movement for Balancing The Air Friction Chart	1120
		Practical Troubleshooting Techniques	1138
Unit 38			1143
	38.1	Introduction to Equipment Installation	1143 1143
	38.2 38.3	Installing Square and Rectangular Duct Installing Round Metal Duct Systems	1145
	38.4	Insulation and Acoustical Lining for Metal Duct	1146
	38.5	Installing Ductboard Systems	1146
	38.6	Installing Flexible Duct	1148
	38.7 38.8	Electrical Installation Installing the Refrigeration System	1148 1150
	38.9		1154
	38.10	The Split-System Condensing Unit	1158
	38.11	Installing Refrigerant Piping on Split-Systems	1159
	38.12	Equipment Start-Up	1163
Unit 39		5, 5	1167
	39.1 39.2	Introduction Residential (Home) Energy Auditing	1167 1168
	39.3	Performing a Home Energy Audit	1169
	39.4	Diagnostic Testing	1175
	39.5 39.6	Blower Door Testing Infrared Scanning Using a Thermal	1175
	37.0	Imaging Camera	1178
	39.7	Sealing Air Leaks	1185
	39.8	Duct Leakage Testing	1188
	39.9	Duct Pressurization Test for Total Air Leakage	1193
	39.10	Duct Leakage to the Outdoors	1194
	39.11	Combustion Efficiency and Safety Testing	1194
		Furnace Efficiency Testing	1197
		Furnace Efficiency Ratings Flame Color	1199 1199
		Furnace Preventive Maintenance	1200
		Spillage and Backdrafting	1200

	39.18 39.19 39.20 39.21 39.22	Flame Safeguard Controls Excess Air Venting Draft High-Efficiency Gas Furnace Anatomy HVAC/R System Testing Numerical Analysis and Reporting	1202 1204 1204 1207 1209 1211 1212
Unit 40	Typic	al Operating Conditions	1218
	40.1	Mechanical Operating Conditions	1218
	40.2 40.3	Relative Humidity and the Load Relationships of System Component	1218
	40.4	Under Load Changes Evaporator Operating Conditions	1219 1219
	40.5	High Evaporator Load and a Cool	1217
		Condenser	1219
	40.6		1222
	40.7		1223
	40.8	Establishing a Reference Point	1001
	40.9	on Unknown Equipment System Pressures and Temperatures	1224
	40.7	for Different Operating Conditions	1225
	40.10	Equipment Efficiency Rating	1228
		Typical Electrical Operating Conditions	1229
		Matching the Unit to the Correct	1000
	10 1 2	Power Supply	1229
	40.15	Starting the Equipment with the Correct Data	1229
	40.14	Finding a Point of Reference for	1227
		an Unknown Motor Rating	1229
	40.15	Determining the Compressor Running Amperage	1230
	40.16	Compressors Operating at Full-Load	1250
		Current	1230
	40.17	High Voltage, the Compressor, and Current Draw	1230
	40.18	Current Draw and the Two-Speed	1250
		Compressor	1231
Unit 41	Troub	leshooting	1233
	41.1	Introduction	1233
	41.2	Mechanical Troubleshooting	1233
	41.3	Approach Temperature and	1007
	41.4	Temperature Difference Gauge Manifold Usage	1237 1238
	41.5	When to Connect the Gauges	1230
	41.6	Low-Side Gauge Readings	1240
	41.7	High-Side Gauge Readings	1240
	41.8	Temperature Readings	1242
	41.9		1247
		Electrical Troubleshooting	1250
		Compressor Overload Problems	1251 1252
		Compressor Electrical Checkup Troubleshooting the Circuit Electrical Protectors—Fuses and Breakers	1252 1256
	41.14	Diagnostic Chart for Air-Conditioning	1250
		(Cooling) Systems	1257
	41.15	Service Technician Calls	1258

SECTION 8: All-Weather Systems

Unit 42 Heat Gains and Heat Losses in Structures 1266

42.1 Introduction to Heat Gain and Heat Loss 1266

	42.2	Methods to Determine the Heat Gain and Heat Loss of a Structure	1267
	42.3	Indoor and Outdoor Design Conditions for Heating and Cooling	1268
	42.4 42.5	U-Values and R-Values Introduction to Heat Gain and Heat	1269
	42.6	Loss Calculations Elements of Structural Heat Loss	1271
		(Heating Mode) Elements of Structural Heat Gain	1271
		(Cooling Mode)	1278
Unit 43		•	1285
	43.1	Reverse-Cycle Refrigeration	1285
	43.2 43.3	Heat Sources for Winter The Four-Way Reversing Valve	1286 1287
	43.4	The Air-to-Air Heat Pump	1290
	43.5	Refrigerant Line Identification	1290
	43.6	Metering Devices	1292
	43.7	Thermostatic Expansion Valves	1292
	43.8	The Capillary Tube	1294
		Combinations of Metering Devices	1295
		Electronic Expansion Valves	1296 1296
	43.11	Orifice Metering Devices Liquid-Line Accessories	1296
	43.13	Application of the Air-to-Air Heat Pump	1298
		Auxiliary Heat	1298
		Balance Point	1299
		Coefficient of Performance	1299
		The Split-Type, Air-to-Air Heat Pump	1300
		The Indoor Unit	1300
	43.19	Temperature of the Conditioned Air The Outdoor Unit	1301 1302
		Package Air-to-Air Heat Pumps	1302
		Controls for the Air-to-Air Heat Pump	1304
		The Defrost Cycle	1311
		Indoor Fan Motor Control	1314
		Second-Stage Electric Heat	1314
	43.26	Servicing the Air-to-Air Heat Pump	1316
		Troubleshooting the Electrical System	1316
		Troubleshooting Mechanical Problems Troubleshooting the Four-Way Reversing	1317
	42.20	Valve	1318
		Troubleshooting the Compressor	1320
	43.31	Checking the Charge Special Applications for Heat Pumps	1321 1321
		Heat Pumps using Scroll Compressors	1322
		Heat Pump Systems with Variable-	
		Speed Motors	1323
	43.35	Diagnostic Chart for Heat Pumps in	4205
	43.36	the Heating Mode Service Technician Calls	1325 1325
Unit 44	Geot	hermal Heat Pumps	1335
	44.1	Reverse-Cycle Refrigeration	1335
	44.2	Geothermal Heat Pump Classifications	1335
	44.3	Open-Loop Systems	1336
	44.4	Water Quality	1337
	44.5	Closed-Loop Systems	1338
	44.6	Ground-Loop Configurations and Flows	1342
	44.7	System Materials and Heat Exchange	1342
		Fluids	1345
	44.8	Geothermal Wells and Water Sources	
		for Open-Loop Systems	1347

44.9 Water-to-Water Heat Pumps	1349
44.10 Troubleshooting	1352
44.11 Direct Geothermal Heat Pump Systems	1354
44.12 Service Technician Calls	1365

SECTION 9: Domestic Appliances

Unit 45 Domestic Refrigerators and Freezers 1372

•••••		soure iteringeratore and i recebie	
		Refrigeration Capacity of Domestic Systems The Evaporator The Compressor The Condenser Metering Device Typical Operating Conditions Ice-Maker Operation Wiring and Controls Servicing the Appliance Service Technician Calls	1372 1380 1381 1384 1386 1390 1392 1394 1395 1404 1419
Unit 46	Room	n Air Conditioners	1433
	46.1 46.2 46.3 46.4 46.5 46.6 46.7 46.8 46.9	Air-Conditioning and Heating with Room Units Room Air-Conditioning—Cooling The Refrigeration Cycle—Cooling Heat-Pump-Style Room Units Installation Controls for Cooling-Only Room Units Controls in Cooling and Heating Units Maintaining and Servicing Room Units Service Technician Calls	1433 1434 1435 1437 1440 1447 1450 1450 1457

SECTION 10: Commercial Air-Conditioning and Chilled-Water Systems

Unit 47 High-Pressure, Low-Pressure, and Absorption Chilled-Water Systems 1464

	-	
47.1	Chillers	1465
47.2	Compression Cycle in High-Pressure	
	Chillers	1466
47.3	Reciprocating Compressors in High-Pressu	
47 4	Chillers	1466
47.4	Scroll Compressors in High-Pressure	11/0
47.5	Chillers Rotary Screw Compressors in High-Pressure	1468
47.5	Chillers	1469
47.6	Centrifugal Compressors in High-Pressure	1407
47.0	Chillers	1470
47.7	Evaporators for High-Pressure Chillers	1474
47.8	Condensers for High-Pressure Chillers	1478
47.9	Metering Devices for High-Pressure	
	Chillers	1481
	Low-Pressure Chillers	1484
	Compressors for Low-Pressure Chillers	1484
	Condensers for Low-Pressure Chillers	1487
	Metering Devices for Low-Pressure Chillers	1487
	Purge Units	1487
	Absorption Air-Conditioning Chillers	1488
47.16	Motors and Drives for Chillers	1498

xi

contents

Unit 48	Cooli	ng Towers and Pumps	1509
		Cooling Tower Function Types of Cooling Towers Fire Protection	1509 1511 1514
		Fill Material Flow Patterns	1515 1515
			1516
	48.7	Tower Materials Fan Section	1517
		Tower Access	1518
	48.9	Tower Sump	1518 1519
		Makeup Water Blowdown	1519
		Balancing the Water Flow in a Cooling	1520
		Tower	1522
		Water Pumps	1522
	48.14	Chemical-Free Treatment of Cooling Tower Water	1530
		lower water	1530
Unit 49		ation, Maintenance, and Troublesho	oting
		illed-Water Air-Conditioning	4507
	Syste		1536
	49.1	Chiller Start-Up	1536
	49.2 49.3	Valves for Large Systems	1542 1545
	49.3 49.4	Scroll and Reciprocating Chiller Operation Large Positive-Displacement Chiller	1545
	·	Operation	1546
	49.5	Centrifugal Chiller Operation Air-Cooled Chiller Maintenance	1546
		Water-Cooled Chiller Maintenance	1546 1548
	49.8	Absorption Chilled-Water System Start-Up	1551
	49.9	Absorption Chiller Operation and	
		Maintenance	1552
		General Maintenance for all Chillers	1553
		Low-Pressure Chillers	1553 1555
		High-Pressure Chillers Refrigerant Safety	1555
	49.14	Service Technician Calls	1555
Unit 50	Comr	nercial, Packaged Rooftop, Variable	
		gerant Flow, and Variable Air Volum	
	Syste		1563

Jyste	51115	1505
50.1	Rooftop Package Units	1564
50.2	Installation of Packaged Rooftop Units	1565

50.3 50.4 50.5 50.6	Economizers Economizer Modes of Operation Ashrae Standard 62 Demand Control Ventilation (DCV) Traditional Constant-Volume Air	1571 1576 1578 1579
	Distributional Constant-Volume Air Distribution Methods Variable Air Volume (VAV) Systems Blowers on VAV Systems	1580 1580 1580
50.11 50.12 50.13	VAV Boxes and Terminal Units Hot Water in the Reheat Coils Chilled-Water VAV Systems Variable Refrigerant Flow (VRF) Systems Dry Coolers	1581 1583 1584 1589 1602

Appendix A Alternative Heating (Stoves and Fireplace Inserts) 1608

A.1	Wood-Burning Stoves	1608
A.2	Organic Makeup and Characteristics	
	of Wood	1608
A.3	Environmental Protection Agency (EPA)	
	Regulations	1609
A.4	Creosote	1609
A.5	Design Characteristics of Wood-Burning	
	Stoves	1609
A.6	Installation Procedures	1613
A.7	Smoke Detectors	1614
A.8	Gas Stoves	1615
A.9	Fireplace Inserts	1615
Appendix B	Temperature Conversion Chart	1617
Glossary/Glosario		1619

1671

PREFACE

Refrigeration & Air Conditioning Technology is designed and written for students in vocational-technical schools and colleges, community colleges, and apprenticeship programs. The content is in a format appropriate for students who are attending classes full-time while preparing for their first job, for students attending classes part-time while preparing for a career change, or for those working in the field who want to increase their knowledge and skills. Emphasis throughout the text is placed on the practical applications of the knowledge and skills technicians need to be productive in the refrigeration and airconditioning industry. The contents of this book can be used as a study guide to prepare for the Environmental Protection Agency (EPA) mandatory technician certification examinations. It can be used in the HVAC/R field or closely related fields by students, technicians, installers, contractor employees, service personnel, and owners of businesses.

This text is also an excellent study guide for the Industry Competency Exam (ICE), the North American Technician Excellence (NATE), the HVAC Excellence, the Refrigeration Service Engineers Society (RSES), the United Association (UA) STAR certification, and the Heating, Air Conditioning, and Refrigeration Distributors International (HARDI) voluntary HVAC/R technician certification and home-study examinations.

The book is also written to correspond to the National Skill Standards for HVAC/R technicians. Previous editions of this text are often carried to the job site by technicians and used as a reference for service procedures. "Do-it-yourselfers" will find this text valuable for understanding and maintaining heating and cooling systems.

As general technology has evolved, so has the refrigeration and air-conditioning industry. A greater emphasis is placed on digital electronic controls and system efficiency. At the time of this writing, every central split cooling system manufactured in the United States today must have a Seasonal Energy Efficiency Ratio (SEER) rating of at least 13. This energy requirement was mandated by federal law as of January 23, 2006. SEER is calculated on the basis of the total amount of cooling (in Btus) the system will provide over the entire season, divided by the total number watt-hours it will consume. Higher SEER ratings reflect a more efficient cooling system. Air-conditioning and refrigeration technicians are responsible for following procedures to protect our environment, particularly with regard to the handling of refrigerants. Technician certification has become increasingly important in the industry.

Global warming has become a major environmental issue. When HVAC/R systems are working correctly and efficiently, they will greatly reduce energy consumption and greenhouse gases. Organizations like the Green Mechanical Council (GreenMech) are advocates for the HVAC/R industry and assist the industry in meeting with government, educational, industry, and labor interests to find solutions to the world's global-warming problem. Green-Mech has created a scoring system designed to help engineers, contractors, and consumers know the "green value" of each mechanical installation. The "green value" encompasses the system's energy efficiency, pollution output, and sustainability. Realtors, building inspectors, builders, and planning and zoning officials will now have some knowledge about and guidance on how buildings and mechanical systems are performing. Green buildings and green mechanical systems are becoming increasingly popular in today's world as a way to curb global warming.

Energy audits have become an integral part of evaluating and assessing an existing building's energy performance. Higher efficiency standards for the energy performance of new buildings have been established. Higher levels of training and certification have been developed for HVAC/R technicians to meet the needs of more sophisticated, energy-efficient buildings and HVAC/R equipment.

TEXT DEVELOPMENT

This text was developed to provide the technical information necessary for a technician to be able to perform satisfactorily on the job. It is written at a level that most students can easily understand. Practical application of the technology is emphasized. Terms commonly used by technicians and mechanics have been used throughout to make the text easy to read and to present the material in a practical way. Many of these key terms are also defined in the glossary. This text is updated regularly in response to market needs and emerging trends. Refrigeration and air-conditioning instructors have reviewed each unit. A technical review takes place before a revision is started and also during the revision process.

Illustrations and photos are used extensively throughout the text. Full-color treatment of most photos and illustrations helps amplify the concepts presented.

No prerequisites are required for this text. It is designed to be used by beginning students, as well as by those with training and experience.

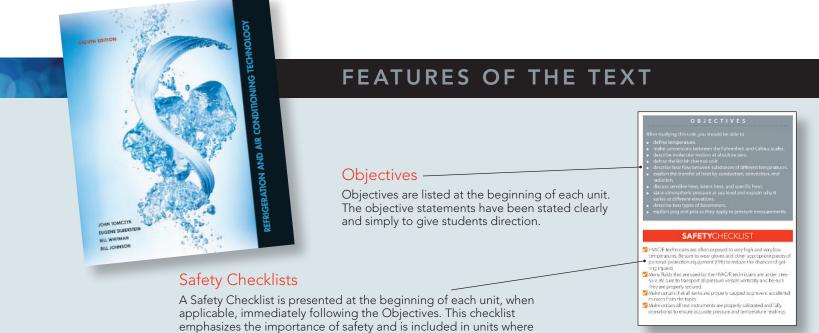
ORGANIZATION

Considerable thought and study have been devoted to the organization of this text. Difficult decisions had to be made to provide text in a format that would meet the needs of varied institutions. Instructors from different areas of the country and from various institutions were asked for their ideas regarding the organization of the instructional content.

The text is organized so that after completing the first four sections, students may concentrate on courses in refrigeration or air conditioning (heating and/or cooling). If the objective is to complete a whole program, the instruction may proceed until the sequence scheduled by the school's curriculum is completed.

NEW IN THIS EDITION

NEW AND/OR EXPANDED CONTENT HAS BEEN ADDED TO THE TEXT IN THE FOLLOWING AREAS:


- WiFi and learning thermostats
- Thermostat applications for smart phones and other electronic hand-held devices
- Fossil-fuel furnace technologies
- Intelligent refrigeration case controllers
- Variable air volume (VAV)
- Variable refrigerant flow (VRF)
- Ultraviolet germicidal irradiation
- Natural refrigerants (hydrocarbons), their structure, boiling points, GWP, ODP, applications, charge amounts, serviceability, handling, transportation and safety
- R-22 alternatives
- System efficiencies with respect to EER, SEER, HSPF
- Supermarket refrigeration systems
- Microchannel heat exchangers
- · Air-conditioning and heat pump technologies
- Ductless split systems
- Variable frequency drives
- Dry coolers

- Mechanical piping techniques
- Basic electronic theory
- Biofluels
- Blueflame burners
- Boiler setback controls
- Mixed air systems
- Psychrometrics
- Ventilation requirements
- Detailed coverage on crankcase heaters
- Detailed coverage on compressor oil pumps, partition walls, and oil check valves
- New photos on scroll compressor valve plates and other damaged valve plates
- Hydrofluoro-olefin (HFO) refrigerants
- Digital evaporator defrost and efficiency controllers
- Digital "Smart" gauges and manifolds including Bluetooth technologies
- Calculating water usage for water-cooled condensers

HOW TO USE THIS TEXT AND SUPPLEMENTARY MATERIALS

This text may be used as a classroom text, as a learning resource for an individual student, as a reference text for technicians on the job, or as a homeowner's guide. An instructor may want to present the unit objectives, briefly discuss the topics included, and assign the unit to be read. The instructor then may want to discuss the material with students. This can be followed by students completing the review questions, which can later be reviewed in class. The lecture outline provided in the *Instructor's Manual* may be utilized in this process. Lab assignments may be made at this time, followed by the students completing the lab review questions.

The instructor resource DVD may be used to access a computerized test bank for end-ofunit review questions, teaching tips, PowerPoint[®] presentations, and more.

"hands-on" activities are discussed.

Safety is emphasized throughout the text. In addition to the Safety Checklist at the beginning of most units, safety precautions and techniques are highlighted throughout. It would be impossible to include a safety precaution for every conceivable circumstance that may arise, but an attempt has been made to be as thorough as possible. The overall message is to work safely whether in a school shop, laboratory, or on the job and to use common sense.

R-22 boils at about -41°F. **R** Do not perform the following exercises—allowing refrigerant to intentionally escape into the atmosphere is against the law! We mention these examples here for illustration purposes only. **R**

Recovery/Recycling/Reclaiming/Retrofitting

Discussions relating to recovery, recycling, reclaiming, retrofitting, or other environmental issues are highlighted in blue throughout the text. In addition, one complete unit on refrigerant management is included—Unit 9, "Refrigerant and Oil Chemistry and Management— Recovery, Recycling, Reclaiming, and Retrofitting."

Green Awareness

As previously mentioned, global warming stemming from the uncontrolled rate of greenhouse gas emissions is a major global environmental issue. Buildings are important users of energy and materials and so are a major source of the greenhouse gases that are the by-products of energy and materials use. At the time of this writing, there are approximately 5 million commercial buildings and 125 million housing units in the United States. Surprisingly, almost every one of their mechanical systems is obsolete. Discussions relating to the green awareness movement (for example, lowering energy costs, reducing operating and maintenance costs, increasing productivity, and decreasing the amount of pollution generated) are highlighted in green throughout the text.

 $5\!\!\!$ The correct size, layout, and installation of tubing, piping, and fittings helps to keep a refrigeration or air-conditioning system operating properly and efficiently and prevents refrigerant loss. 5

HVAC GOLDEN RULES

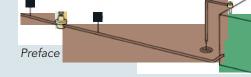
When making a service call to a business:

- Never park your truck or van in a space reserved for customers.
- Look professional and be professional.
- Before starting troubleshooting procedures, get all the information you can regarding the problem.
- Be extremely careful not to scratch tile floors or to soil carpeting with your tools or by moving equipment.
- Be sure to practice good sanitary and hygiene habits when working in a food preparation area.
- Keep your tools and equipment out of the customers' and employees' way if the equipment you are servicing is located in a normal traffic pattern.
- Be prepared with the correct tools and ensure that they are in good condition.
- Always clean up after you have finished. Try to provide a little extra service by cleaning filters, oiling motors, or providing some other service that will impress the customer.
- Always discuss the results of your service call with the owner or representative of the company. Try to persuade the owner to call if there are any questions as a

HVAC Golden Rules

Golden Rules for the refrigeration and air-conditioning technician give advice and practical hints for developing good customer relations. These "golden rules" appear in appropriate units.

PACKAGED EQUIPMENT. Packaged equipment is built and designed for minimum maintenance because the owner may be the person that takes care of it until a breakdown occurs. be the person that takes care of it until a breakdown occurs. Most of the fan motors are permanently lubricated and will run until they quit, at which time they are replaced with


new ones. The owners should be educated to keep the condensers The owners should be educated to keep the conduction of t the owners should be educated to keep the condensers deal and not to stack inventory so close as to block the con-denser airflow. When the unit is a reach-in cooler, the owner should be cautioned to follow the manufacturate directions denser airtiow. When the unit is a reach-in cooler, the owner should be cautioned to follow the manufacturer's directions in loading the box. The load line on the inside should be observed for proper air distribution.

PREVENTIVE MAINTENANCE FOR REFRIGERATION inspected and cleaned regularly. The technician cannot always inspected and cleaned regularly. The technician cannot aways tell when a coil is dirty by looking at the evaporator. Grease or dirt may be in the core of the coil. Routine cleaning of the or dirt may be in the core of the coil. Routine cleaning of the evaporator once a year will usually keep the coil clean. **SAFETY PRECAUTION:** Use only approved cleaning compounds where food is moster. Turn off the power before cleaning any system. Cover the fan and detergent from getting into them.• The motors in the evaporator unit are usually could and

and detergent from getting into them. The motors in the evaporator unit are usually sealed and permanently lubricated. If not, they should be lubricated at recommended intervals, which are often marked on the motor. Observe the fan blade for alignment and look for bearing.

Preventive Maintenance

Preventive Maintenance procedures are included in many units and relate specifically to the equipment presented in that unit. Technicians can provide some routine preventive maintenance service when on other types of service calls as well as when on strictly maintenance calls. The preventive maintenance procedures provide valuable information for the new or aspiring technician and homeowner, as well as for those technicians with experience.

No heat—thermostat calling for heat Open disconnect switch Open fuse or breaker Possible Repa Close disconnect switch High-temperature fuse link open circuit Replace fuse or reset breaker and determine why it opened. Tighten loose connection at fuse link Faulty high-voltage wiring or connections Repair or replace faulty wiring or Control-voltage power supply off Check control-voltage fuses and safety Faulty control-voltage wiring or Insufficient heat Repair or replace faulty wiring or Heating element burned, open circuit Portion of heaters or limits open circuit Replace heating element—check airflow Correct voltage

SERVICE CALL 1

A customer calls indicating that the boiler in the equipment room at a motel has hot water running out and down the drain all the time. Another service company has been performing service at the motel for the last few months. The problem is that the water-regulating valve (boiler water feed) is out of adjustment. Water is seeping from the boiler's pressure relief valve, **Figure 14.66**.

The technician arrives at the motel, parking alongside the building so as not to block the front door or the motel's registration parking areas. When the property manager comes into the office to greet the technician, the technician intro-

Service Technician Calls

In many units, practical examples of service technician calls are presented in a down-to-earth situational format. These are realistic service situations in which technicians may find themselves. In many instances, the solution is provided in the text, and in others the reader must decide what the best solution should be. These solutions are provided in the Instructor's Manual. The Service Technician Calls will now incorporate customer relations and technician soft skills.

SUMMARY

- Thermometers measure temperature. Four temperature scales are Fahrenheit, Celsius, Fahrenheit absolute (Rankine), and Celsius absolute (Kelvin).
- Molecules in matter are constantly moving. The higher the temperature, the faster they move.The British thermal unit (Btu) describes the quantity of
- heat in a substance. One Btu is the amount of heat necessary to raise the temperature of 1 lb of water 1°F.The transfer of heat by conduction is the transfer of heat
- The transfer of heat by conduction is the transfer of heat from molecule to molecule.The transfer of heat by convection is the actual moving of the transfer of heat by convection is the actual moving of the transfer of heat by convection.
- heat in a fluid (vapor state or liquid state) from one place to another.Radiant heat is a form of energy that does not depend on
- matter as a medium of transfer. Solid objects absorb the energy, become heated, and transfer the heat to the air.Sensible heat causes a rise in temperature of a substance.
- Latent (or hidden) heat is heat added to a substance that causes a change of state and does not register on a thermometer.
 Specific heat is the amount of heat (measured in Btu) required to raise the temperature of 1 lb of a substance
- 1°F. Substances have different specific heats. Pressure is the force applied to a specific unit of area. The atmosphere around the earth has weight and therefore
- exerts pressure.Barometers measure atmospheric pressures in inches of mercury. Two of the barometers used are the mercury and
- the aneroid. Gauges have been developed to measure pressures in enclosed systems. Two common gauges used in the airconditioning, heating, and refrigeration industry are the compound gauge and the hish-pressure gauge.

REVIEW QUESTIONS

- 1. Temperature is defined as A. how hot it is.
- B. the level of heat. C. how cold it is.
- D. why it is hot.

2. State the standard conditions for water to boil at 212°F.

°C.

- List four types of temperature scales.
 Under standard conditions, water freezes at
- 5. Molecular motion stops at _____°F.

Summary

The Summary appears at the end of each unit prior to the Review Questions. It can be used to review the unit and to stimulate class discussion.

Review Questions

Review Questions follow the Summary in each unit and can help to measure the student's knowledge of the unit. There are a variety of question types—multiple choice, true/false, short answer, short essay, and fill-in-the-blank.

SUPPORT MATERIALS

INSTRUCTOR'S MANUAL

This manual includes an overview of each text unit, including a summary description, a list of objectives, and important safety notes. The manual provides diagnoses for service technician calls that are not solved in the text. It also includes references to lab exercises associated with each unit. "Special Notes to Instructors" specify how to create an equipment "problem" for students to resolve during certain lab exercises. The manual also provides answers to the review questions in the text and to all questions in the *Lab Manual and Workbook* (review and lab exercises). ISBN: 978-1-305-58326-9.

LAB MANUAL AND WORKBOOK

The *Lab Manual and Workbook* includes a unit overview, key terms, and a unit review test. Each lab provides a general introduction to the lab, including objectives, text references, tools, materials, and safety precautions. The manual then provides a series of practical exercises for the student to complete in a "hands-on" lab environment, including maintenance instructions for the workstation and tools. Cross references to the "Special Notes to Instructors" in the *Instructor's Manual* allow the instructor to create a system "problem" to be solved in the lab. ISBN: 978-1-305-57870-8

INSTRUCTOR RESOURCES DVD

This educational resource creates a truly electronic classroom. It is a DVD containing tools and instructional resources that enrich the classroom and make the instructor's preparation time shorter. The elements of the instructor resource link directly to the text to provide a unified instructional system. With the instructor resource the instructor can spend time teaching, not preparing to teach. ISBN: 978-1-305-58327-6.

Features contained in the instructor resource include the following:

- Syllabus. This is the standard course syllabus for this textbook, providing a summary outline for teaching HVAC/R.
- Teaching Tips. Teaching hints form a basis for presenting concepts and material. Key points and concepts can be highlighted graphically to enhance student retention.
- Lecture Outlines. The key topics and concepts that should be covered for each unit are outlined.
- PowerPoint Presentation. These slides can be used to outline a lecture on the concepts and material. Key points and concepts are highlighted graphically to enhance student retention.
- Image Gallery. This database of key images (all in full color) taken from the text can be used in lecture presentations, as transparencies, for tests and quizzes, and with PowerPoint presentations.
- Test Bank. Over 1000 questions of varying levels of difficulty are provided in true/false, multiple-choice, fill-in-the-blank, and short-answer formats for assessing student comprehension. This versatile tool allows the instructor to manipulate the data to create original tests.

VIDEO DVD SET

A seven-DVD video set addressing over 120 topics covered in the text is available. Each DVD contains four 20-minute videos. To order the seven-DVD set, reference ISBN: 978-1-111-64451-2.

MINDTAP

MindTap is well beyond an eBook, a homework solution or digital supplement, a resource center website, a course delivery platform, or a Learning Management System. MindTap is a new personal learning experience that combines all your digital assets—readings, multimedia, activities, and assessments—into a singular learning path to improve student outcomes.

INSTRUCTOR SITE

An Instructor Companion website containing supplementary material is available. This site contains an Instructor's Manual, teaching tips, syllabus, lecture outline, an image gallery of text figures, unit presentations done in PowerPoint, and testing powered by Cognero. *Cengage Learning Testing Powered by Cognero is a flexible, online system that allows you to:*

- author, edit, and manage test bank content from multiple Cengage Learning solutions
- create multiple test versions in an instant
- deliver tests from your LMS, your classroom, or wherever you want

Contact Cengage Learning or your local sales representative to obtain an instructor account. To access an Instructor Companion website from SSO Front Door:

- 1. Go to http://login.cengage.com and log in using the instructor e-mail address and password.
- 2. Enter author, title, or ISBN in the Add a title to your bookshelf search.
- 3. Click Add to my bookshelf to add instructor resources.
- 4. At the Product page, click the Instructor Companion site link.

DELMAR ONLINE TRAINING SIMULATION: HVAC

Delmar Online Training Simulation: HVAC is a 3D immersive simulation that offers a rich learning experience and mimics field performance. To address the critical area of Electricity, it offers a learning path from basic electrical concepts to real-world electrical troubleshooting. This innovative product includes dynamic interactive wiring diagrams in two modes: an open sand-box mode for exploration and experimentation, and a tutorial mode where the proper sequencing required for sound electrical practice is provided. Both modes are supported by an adaptive question engine. Learning electrical theory, and trying and testing sound electrical practice prepares the student for life-like, simulated exposure to faults with the HVAC equipment that follows. It also challenges learners to master diagnostic and troubleshooting skills across seven pieces of HVAC equipment found in the industry—Gas Furnace, Oil Furnace, Gas Boiler, Split Residential A/C, Commercial A/C, Heat Pumps, and Commercial Walk-in Freezers. Soft skills are also included within the simulation.

To create successful learning outcomes, Delmar Online Training Simulation: HVAC offers approximately 200 scenarios which allow students to troubleshoot and build diagnostic and critical thinking skills. Two modes within the simulation promote incremental learning: Training Mode and Challenge Mode. Training Mode has fixed scenarios to aid in familiarizing the user with the equipment, the problem needing attention, and the capabilities of the simulation. Challenge Mode has randomized scenarios within three levels: Beginner, Intermediate, and Advanced. Both modes require learners to diagnose a fault or faults and perform the repair successfully while materials and labor costs are tracked. An integrated digital badging system helps students track their progress and adds additional engagement and motivation. Simulation-based videos teach students key troubleshooting concepts as well as familiarize them with the simulation. The instructional design allows for full open engagement, so students do not have artificial guardrails leading them to a conclusion.

Combining sound instructional design with top-quality computer immersive technology, learners develop critical thinking skills and apply them to real-world customer service calls in a simulated, 3D, life-like setting. This performance simulation complements live training practice by reinforcing good habits, and even presenting scenarios that are impractical (dangerous, expensive, etc.) to create in labs or in a residence. Available for instant purchase on www.cengagebrain.com.

ABOUT THE AUTHORS

JOHN TOMCZYK

John Tomczyk received his associate's degree in refrigeration, heating, and air-conditioning technology from Ferris State University in Big Rapids, Michigan; his bachelor's degree in mechanical engineering from Michigan State University in East Lansing, Michigan; and his master's degree in education from Ferris State University.

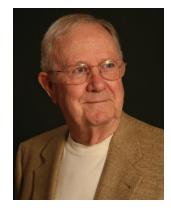
Professor Tomczyk has worked in refrigeration, heating, and air-conditioning service and project engineering and served as a technical writing consultant in both the academic and industrial fields. His technical articles have been featured in the *Refrigeration News, Service and Contracting Journal*, and *Engineered Systems Journal*. He writes monthly for the *Air Conditioning, Heating, Refrigeration News* and is coauthor of an EPA-approved *Technician Certification Program Manual* and a Universal R-410A Safety and Retrofitting Training Manual. Professor Tomczyk also is the author of the book *Troubleshooting and Servicing Modern Air Conditioning and Refrigeration Systems*, published by ESCO Press. He also is co-owner of Delta Tee Solutions Inc., a Subchapter-S Corporation and sole owner of Technical Writing Services, LLC. Professor Tomczyk has recently retired from his professorship at Ferris State University after 29 years of service with the title of Professor Emeritus. While continuing consulting through his two companies and being a member of many HVAC/R trade organizations, he will be spending his winters in Maui, Hawaii and the remainder of the year living in the quaint beach town of Empire located in the Sleeping Bear National Lakeshore in Michigan.

EUGENE SILBERSTEIN

Over the past 30-plus years, Eugene has been involved in all aspects of the HVAC/R industry from field technician and system designer to company owner, teacher, administrator, consultant, and author. Eugene is presently an Assistant Professor and the lead faculty member in the HVAC/R program at Suffolk County Community College in Brentwood, New York. Eugene has over 20 years of teaching experience and has taught at a number of institutions in the Greater New York area.

Eugene earned his dual Bachelors Degree from The City College of New York and his Masters of Science degree from Stony Brook University, where he specialized in Energy and Environmental Systems, studying renewable and sustainable energy sources such as wind, solar, geothermal, biomass, and hydropower. He presently holds the Certified Master HVAC/R Educator (CMHE) credential from the ESCO Group and the Building Energy Assessment Professional (BEAP) credential issued by ASHRAE.

As an active member of both ASHRAE and RSES, Eugene served as the subject matter expert and wrote the production scripts for over 30 education videos directly relating to our industry. Other book credits include *Residential Construction Academy: HVAC*, 1st and 2nd Edition, *Pressure Enthalpy Without Tears* (2006), *Heat Pumps*, 1st and 2nd Edition, *and Psychrometrics Without Tears* (2014). Eugene has also written a number of articles for industry newspapers and magazines.


Eugene was selected as one of the top HVAC/R instructors in the country for the 2005/2006, 2006/2007, and 2007/2008 academic school years by the Air Conditioning and Refrigeration Institute (ARI), now AHRI, and the Air Conditioning, Heating and Refrigeration (ACHR) News.

BILL WHITMAN

Bill Whitman graduated from Keene State College in Keene, New Hampshire, with a bachelor's degree in industrial education. He received his master's degree in school administration from St. Michael's College in Winooski, Vermont. After instructing drafting courses for 3 years, Mr. Whitman became the Director of Vocational Education for the Burlington Public Schools in Burlington, Vermont, a position he held for 8 years. He spent 5 years as the Associate Director of Trident Technical College in Charleston, South Carolina. Mr. Whitman was the head of the Department of Industry for Central Piedmont Community College in Charlotte, North Carolina, for 18 years.

BILL JOHNSON

Bill Johnson graduated from Southern Polytechnic with an associate's degree in gas fuel technology and refrigeration. He worked for the North Carolina's Weights and Measures Department; Coosa Valley Vocational and Technical Institute in Rome, Georgia; and the Trane Company of North Carolina. He also owned and operated an air-conditioning, heating, and refrigeration business for 10 years. He has unlimited North Carolina licenses in heating, air-conditioning, and refrigeration. Mr. Johnson taught heating, air-conditioning, and refrigeration. Mr. Johnson taught heating, air-conditioning, and refrigeration curriculum for the state community college system. He has written a series of articles for the website of the *Air Conditioning, Heating, Refrigeration News*. These articles, called "BTU Buddy," describe service situation calls for technicians. Mr. Johnson has also authored the *BTU Buddy Notebook* along with two textbooks, *Practical Heating Technology* and *Practical Cooling Technology*, published by Cengage Learning.

ACKNOWLEDGMENTS

The authors thank the following individuals, companies, and universities for their valuable contributions to this text:

- James DeVoe, Senior Acquisitions Editor, for his work with the authors and the publisher to produce a workable text that is both economical and comprehensive. His perpetual energies and insistence on the best possible product have resulted in a quality text that is usable both in schools and in the field.
- John Fisher, Senior Product Manager, for his work with the authors and publisher to ensure the accuracy of the details in this text. His professional, thorough, and enthusiastic handling of the text manuscript will provide the student with a well-presented, usable product.
- Kara DiCaterino, Senior Content Project Manager, for a great job of making sure all pages, artwork, and photographs are well presented and easy to follow. Her professional skills and talents are greatly appreciated.
- The late **Ed Bottum**, **Sr**., President of Refrigeration Research, Inc., in Brighton, Michigan, for supplying much of the history and many photographs for the timeline found in the introduction to this text. Mr. Bottum's historical collection of refrigeration items and artifacts in Brighton, Michigan, has been designated a National Historic Site by the American Society of Mechanical Engineers (ASME).
- Ferris State University, Big Rapids, Michigan, for permission to use their building and HVAC/R applications laboratories to take digital photographs. These digital photographs have certainly enhanced many units in this book.
- **Bill Litchy**, Training Materials Manager, Scotsman Ice Systems, for his valued technical consultation and professional guidance in Unit 27, "Commercial Ice Machines," in this edition. Technical literature, photographs, and illustrations from the Scotsman Company have greatly enhanced this book.

- **Danny Moore**, Director of Technical Support, Hoshizaki America, Inc., for his technical assistance in Unit 27, "Commercial Ice Machines." His published technical articles on the topics of water and ice quality and water filtration and treatment surely enhanced the quality of this unit.
- Mitch Rens, Service Publications Manager, Manitowoc Ice Inc., for his valued technical assistance and professional consultation in Unit 27, "Commercial Ice Machines." Technical literature and photographs from Manitowoc have made the unit current and applicable.
- **Rex Ambs**, Manager of GeoFurnace Heating and Cooling, LLC, and CoEnergies, LLC, in Traverse City, Michigan, for his assistance with the enhancements to Unit 44, "Geothermal Heat Pumps." He supplied detailed technical information and digital photographs on waterless, earth-coupled, closed-loop geothermal heat pump technology.
- Jim Holstine, Manager of GeoFurnace Heating and Cooling, LLC, and CoEnergies, LLC, in Traverse City, Michigan, for his technical assistance in Unit 44, "Geothermal Heat Pumps."
- Dennis Weston and Tom Kiessel, Managers of CoEnergies, LLC, in Traverse City, Michigan, for supplying many digital photographs of waterless, earth-coupled, closed-loop geothermal heat pump systems used in Unit 44, "Geothermal Heat Pumps."
- **Roger McDow**, Senior Instructional Lab Facilitator, Central Piedmont Community College in Charlotte, North Carolina, for assisting in the setup of the photographic sessions for all editions of this book. He organized and provided many tools and controls for photography that have provided an invaluable educational experience for students.
- **Tony Young**, Emerson Climate Technologies, Inc., for making his company's valuable technical literature and photographs available for use in this edition.

- Modine Manufacturing Company, 1500 DeKoven Ave., Racine, Wisconsin, 53403, for the use of both its technical literature and photographs of the all-aluminum Micro Channel coil technology.
- Dan Mason, Danfoss Turbocore Compressors, Inc., for making his company's technical literature and photographs available for use in this edition.
- Sporlan Division, Parker Hannifin Corporation, for making its technical literature and photographs available for use in this edition.

John Levey of Oilheat Associates, Inc., in Wantagh, New York, for his assistance in compiling and reviewing material for Unit 32, "Oil Heat," as well as providing new images for use in the text.

A special thanks to the family members and close relatives of the authors for their help and patience while this edition was being developed.

The contributions of the following reviewers of the fourth, fifth, and sixth edition texts are gratefully acknowledged:

George Gardianos, Lincoln Technical Institute, Mahwah, New Jersey

- Raymond Norris, Central Missouri State University, Warrensburg, Missouri
- Arthur Gibson, Erwin Technical Center, Tampa, Florida
- **Robert J. Honer**, New England Institute of Technology at Palm Beach, West Palm Beach, Florida
- Richard McDonald, Santa Fe Community College, Gainesville, Florida
- Joe Moravek, Lee College, Baytown, Texas
- Neal Broyles, Rolla Technical Institute, Rolla, Missouri
- John B. Craig, Sheridan Vocational Technical Center, Hollywood, Florida
- Rudy Hawkins, Kentucky Tech–Jefferson Campus, Louisville, Kentucky Richard Dorssom, N.S. Hillyard AVTS, St. Joseph, Missouri
- Robert Ortero, School of Cooperative Technical Education, New York, New York
- John Sassen, Ranken Technical College, St. Louis, Missouri
- Billy W. Truitt, Worcester Career and Technology Center, Newark, Maryland
- George M. Cote, Erwin Technical Center
- Marvin Maziarz, Niagara County Community College, Sanborn, New York
- Greg Skudlarek, Minneapolis Community and Technical College, Minneapolis, Minnesota
- Chris Rebecki, Baran Institute, Windsor and West Haven, Connecticut Wayne Young, Midland College, Midland, Texas
- Darren M. Jones, Meade County Area Technology Center, Brandenburg, Kentucky
- Keith Fuhrman, Del Mar College West, Corpus Christi, Texas
- Eugene Dickson, Indian River Community College, Fort Pierce, Florida
- Mark Davis, New Castle School of Trades, Pulaski, Pennsylvania Phil Coulter, Durham College, Skills Training Center (Whitby Campus),
- Whitby, Ontario, Canada
- Larry W. Wyatt, Advanced Tech Institute, Virginia Beach, Virginia Bob Kish, Belmont Technical College, St. Clairsville, Ohio
- John Pendleton, Central Texas College, Killeen, Texas

- Richard Wirtz, Columbus State Community College, Columbus, Ohio
- Brad Richmand, ACCA, Washington, District of Columbia
- Greg Perakes, Tennessee Technology Center at Murfreesboro, Murfreesboro, Tennessee
- Thomas Schafer, Macomb Community College, Warren, Michigan
- Larry Penar, Refrigeration Service Engineers Society (RSES), Des Plaines, Illinois
- Johnnie O. Bellamy, Eastfield College Continuing Education, Mesquite, Texas
- John Corbitt, Eastfield College Continuing Education, Mesquite, Texas
- Dick Shaw, ACCA, Washington, D.C.

Hugh Cole, Gwinnett Technical Institute, Lawrenceville, Georgia

Norman Christopherson, San Jose City College, San Jose, California

- Barry Burkan, Apex Technical School, New York, New York
- Victor Cafarchia, El Camino College, Torrance, California
- Cecil W. Clark, American Trades Institute, Dallas, Texas
- Bill Litchy, Training Materials Manager, Scotsman Ice Systems, Vernon Hills, Illinois
- Danny Moore, Director of Technical Support, Hoshizaki America, Peachtree City, Georgia
- Lawrence D. Priest, Tidewater Community College, Virginia Beach, Virginia
- Mitch Rens, Service Publications Manager, Manitowoc Ice, Inc., Manitowoc, Wisconsin
- Terry M. Rogers, Midlands Technical College, West Columbia, South Carolina
- Russell Smith, Athens Technical College, Athens, Georgia

The authors would like to thank the following individuals and companies for their valuable contributions to the 7th edition, 25th Anniversary Edition text:

- **Joseph R. Pacella**, MS ISM, LEED AP, Associate Professor, Ferris State University for help in providing information on the USGBC and LEED rating systems.
- John Pastorello, CEO, Refrigeration Technologies, Anaheim, CA, for supplying the technical information and digital photographs on basic and advanced leak detection in Unit 8, Leak Detection, System Evacuation, and System Cleanup.
- **Robert Nash, Jr.,** Senior Engineer, Emerson Climate Technologies, Ferris State University HVACR graduate for providing technical information and digital photographs which assisted in writing the carbon dioxide (CO_2) refrigeration system section in Unit 26.
- Nick Strickland, Market Development Manager, DuPont Corporation for providing technical information on refrigerants, refrigerant blends, and their compatible oils.
- Michael D. Stuart, T/IRT Level III Thermographer (Certified per ASNT Standards), Senior Product Marketing Manager, Fluke Corporation for his unselfish assistance in writing Unit 39, Residential Energy Auditing by providing many self-authored, published technical articles on residential energy auditing, and many digital photographs incorporating infrared technology which enhanced the quality of Unit 39. Special thanks to the Fluke Corporation.

- Patrick Pung, Maintenance Mechanic, Selfridge Air National Guard Base, Ferris State University HVACR Technology graduate for providing technical information and digital photographs on closed-loop, slinky, geothermal heat pump systems used in enhancing Unit 44, Geothermal Heat Pump Systems.
- William M. (Bill) Johnson for providing most of the proofreading and comments for the 7th edition and special 25th anniversary edition of this book.
- Joe Parsons, Vice President, Earthlinked Technologies Incorporated for providing technical information and digital photographs of Direct GeoExchange heat pump systems used in the enhancement of Unit 44, Geothermal Heat Pumps.
- Arn McIntyre, MS Eng., Energy Center Director at Ferris State University for his assistance in locating technical literature and contacts for writing Unit 39, Residential Energy Auditing.
- **Jason Mauric**, Ferris State University HVACR Technology student for his assistance in photography and equipment used in writing the Residential Energy Auditing unit.
- Mary Jo Gentry, Marketing Communications Manager, Richie Engineering Company–Yellow Jacket Products Division for providing many digital images of the Richie Engineering Company's tools and equipment used in the HVACR field.
- Frank Spevak, Marketing and Sales Manager, and Paul Morin, Technical Sales Specialist, The Energy Conservatory, for providing technical assistance and digital photographs used in writing Unit 39, Residential Energy Auditing.
- Jerry Ackerman, Director of Marketing and Communications, Clearwater Systems Corporation for providing technical literature and digital photographs on the latest technology in chemical-free water treatment for cooling towers used in Unit 48, Cooling Towers and Pumps.
- Victor DesRoches, Marketing Coordinator, LAKOS Separators and Filtration Solutions, Fresno, CA, for providing technical literature and photographs on centrifugal particle separators which enhanced the quality of Unit 48, Cooling Towers and Pumps.
- **Phyllis Shaw**, Marketing Communications Supervisor, Sporlan Division–Parker Hannifin Corporation for providing countless digital photographs and system schematics which can be viewed throughout this book. Quality technical literature provided has also updated and enhanced many units in this new edition and also throughout the entire book.
- Fieldpiece Instruments Corporation, for providing quality digital photos of their modern HVACR tools and equipment.
- **Greg Sundheim**, President, and **Dave Boyd**, Vice President, Appion Corporation, for providing both technical literature and quality digital photographs which have greatly enhanced Unit 8, Leak Detection, System Evacuation, and System Cleanup.
- National Refrigerants, Inc., Philadelphia, PA, for their technical information on refrigerants and retrofitting refrigeration systems.
- Karl Huffman, President, Hedrick Associates Marley Cooling Towers, Grand Rapids, MI, Ferris State University HVACR Graduate for his assistance in providing technical literature and photographs on chemical-free water treatment using pulse technology for cooling towers in Unit 48, Cooling Towers and Pumps.
- **Paul Fauci** of Slant/Fin Corporation for assistance with the artwork incorporated in the Heating Units of the text.
- Laura Harris at WaterFurnace for images of the Envision NXW reverse-cycle chiller.
- Thomasena Philen of Daikin AC for valuable assistance with the Variable Refrigerant Flow content.

- Brian G. Good of GI Industries for high quality images and technical input on duct cleaning equipment.
- Tony Quick of Air System Components, Trion Division for high quality humidifier images.

The authors would like to thank the following individuals and companies for their valuable contributions to the 8th edition text:

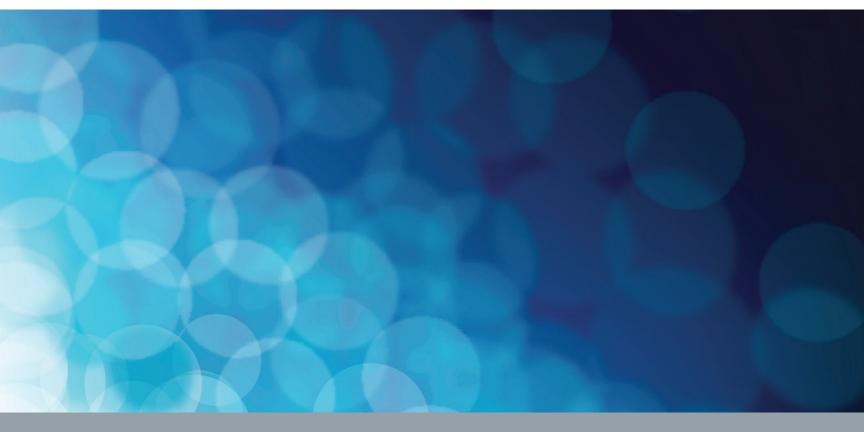
John Campbell, Renton Technical College, Renton, WA.

Jason Leeds, North Central Kansas Tech, Hayes, KS.

- Raul Lopez, Houston Community College, Houston, TX.
- Dennis Matney, Ivy Tech Community College, Indianapolis, IN.
- Tim Cary, Dwyer Instruments, Inc., Michigan City, IN for high quality images of airflow measuring instruments.
- **Robert Thompson**, Dwyer Instruments, Inc., Michigan City, IN for help with technical data regarding airflow measuring and the use of airflow measuring instrumentation.
- **Deborah Keny**, SPX Cooling Technologies, Overland Park, KS for high quality images of cooling towers and cooling tower configurations.
- Tim Snyder, Marketing Manager, The Chemours Company (Formerly DuPont), for his continued support with up-to-date refrigerant technologies, artwork, and technical support. Tim is a true friend of the authors and the industry.
- **David Foster**, Uniweld Products, Inc., Fort Lauderdale, FL, for providing high quality images of a number of tools and pieces of test equipment for inclusion in the book. An all-around nice guy and a long-time supporter of the writing team and the industry.
- **Eugene Ziegler**, Sales Engineer and Training Materials Manager, Sporlan, Parker Hannifin, for providing test instrumentation for inclusion in the text.
- **Dave Boyd**, Vice President, Appion Star Performance, Englewood, CO, for providing test instrumentation for inclusion in the text. A nice guy and a great harmonica player.
- John Levey, President, Oilheat Associates, Wantagh, NY for numerous high quality images and technical assistance with the Oil Heat Unit. A true gentleman and a close, personal friend.
- C. Curtis Lawson, Sr. Technical Service Consultant, DuPont Refrigerants for his assistance in providing technical literature on the HVAC/R industry's newer refrigerants and refrigerant blends.
- **Dr. Stanley Friedman**, retired Neurologist, Phoenix, Arizona for his thorough proofreading of many units in this 8th edition.
- Keith Satterthwaite, Lincoln Technical Institute, Union NJ for his insight and valuable contributions to Unit 36.

AVENUE FOR FEEDBACK

The authors would appreciate feedback from students and/or instructors. They can be reached through Cengage Learning in Clifton Park, New York, or through the following e-mail addresses:


John A. Tomczyk

tomczykjohn@gmail.com

Eugene Silberstein

eugene.silberstein@yahoo.com

SECTION 1

THEORY OF HEAT

Units

Introduction

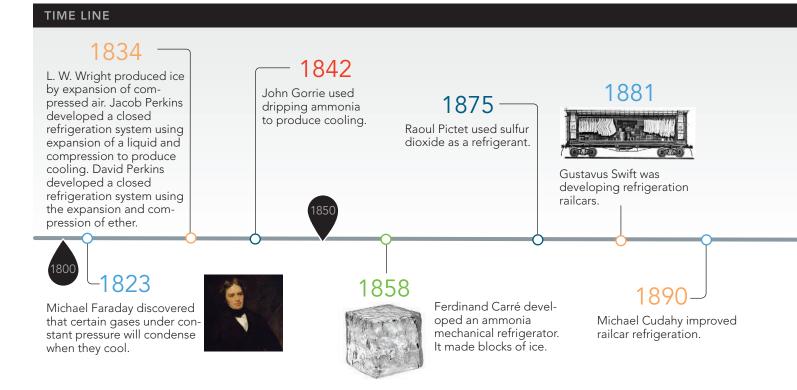
- Unit 1 Heat, Temperature, and Pressure
- Unit 2 Matter and Energy
- Unit 3 Refrigeration and Refrigerants

INTRODUCTION

Refrigeration is a complex topic that covers a wide range of areas. Refrigeration relates to the cooling of substances to

- preserve and transport food products,
- produce ice,
- aid in the manufacturing of many commercial products, and
- aid in medical research.

In addition, refrigeration plays vital roles in many other industrial, commercial, and residential applications. Airconditioning, a form of refrigeration, refers to space heating, cooling, dehumidifying, humidifying, air filtering, exhausting, ventilating, and improving overall indoor air quality for those in the occupied space.


HISTORY OF REFRIGERATION AND AIR-CONDITIONING (COOLING)

Most evidence indicates that the Chinese, as early as 1000 B.C., were the first to store ice and snow in order to cool wine and other food products. Early Greeks and Romans used underground pits, which were insulated with straw and

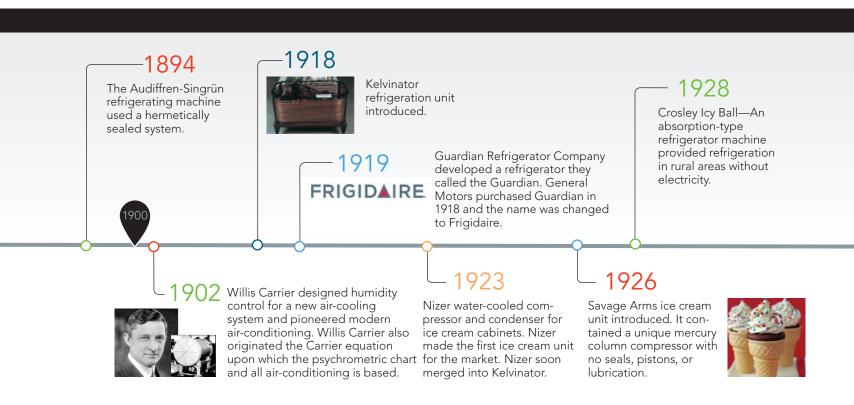
weeds, to store ice for long periods of time. The ancient people of Egypt and India cooled liquids in porous earthen jars. These jars were set out in the dry night air, and the evaporation of the liquids seeping through the porous walls provided the cooling. Some evidence indicates that ice was even produced from the vaporization of water through the walls of these jars.

In the eighteenth and nineteenth centuries, natural ice was cut from lakes and ponds in the winter in the northern United States and stored underground for use in the warmer months. Some of this ice was packed in sawdust and transported to southern states to be used for preserving food. In the early twentieth century, it was still common in the northern states for ice to be cut from ponds and then stored in open ice houses. Sawdust insulated the ice, which was then delivered to homes and businesses.

In 1823, Michael Faraday discovered that certain gases under constant pressure will condense when they cool. In 1834, Jacob Perkins, an American, developed a closed refrigeration system using liquid expansion and then compression to produce cooling. He used ether as a refrigerant, a hand-operated compressor, a water-cooled condenser, and an evaporator in a liquid cooler. He was awarded a British patent for this system. In Great Britain during the same year, L. W. Wright produced ice by the expansion of compressed air.

In 1842, Florida physician John Gorrie placed a vessel of ammonia atop a stepladder and let the ammonia drip, which then vaporized and produced a cooling effect. This basic principle is still used in air-conditioning and refrigeration today. In 1856, Australian inventor James Harrison, an immigrant to America from Scotland, also used ammonia experimentally, but reverted to an ether compressor in equipment that had been previously constructed. In 1858, a French inventor, Ferdinand Carré, developed a mechanical refrigerator using liquid ammonia in a compression machine that produced blocks of ice. Generally, mechanical refrigeration was first designed to produce ice.

In 1875, Raoul Pictet of Switzerland first used sulfur dioxide as a refrigerant. Sulfur dioxide was not only a good refrigerant, but also served as a good lubricant for the system's compressor. This refrigerant was used frequently after 1890 and on British ships into the 1940s. Refrigeration railcars were developed by Gustavus Swift in 1881, and in 1890, Michael Cudahy had improved their design. Sulfur dioxide was also used in the Audiffren-Singrün refrigeration machine patented in 1894 by a French priest and physicist, Father Marcel Audiffren. It was originally designed to cool liquids, such as wine, for the monks.


In 1902, Willis Carrier, the "father of air-conditioning," designed a humidity control to accompany a new air-cooling system. He pioneered modern air-conditioning. In 1915, he, along with other engineers, founded Carrier Engineering, now known as the Carrier Corporation.

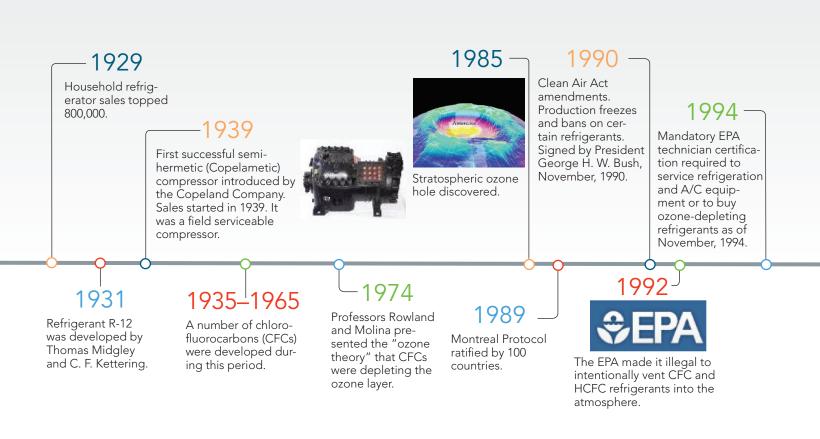
In 1918, the Kelvinator company, originally named the Electro Automatic Refrigeration Corporation, came into being and sold the first Kelvinator household units. The refrigerator was a remote-split type in which the condensing unit was installed in the basement and connected to an evaporator in a converted icebox in the kitchen. The Guardian Refrigerator Company developed a refrigerator they called "the Guardian." General Motors purchased Guardian in 1919 and developed the refrigerator they named Frigidaire. By 1929, refrigerator sales topped 800,000. The average price fell from \$600 in 1920 to \$169 in 1939. By the 1930s, refrigeration was well on its way to being used extensively in American homes and commercial establishments.

In 1923, Nizer introduced a water-cooled compressor and condensing unit for ice cream cabinets, considered to be the first commercial ice cream unit. Nizer soon merged into the Kelvinator Company. In 1923–1926, units produced by Savage Arms were among the first automatically controlled commercial units. The Savage Arms compressor had no seals, no pistons, and no internal moving parts. A mercury column compressed the refrigerant gas as the entire unit rotated. The compressor was practically noiseless.

In 1928, Paul Crosley introduced an absorption-type refrigeration machine so that people could have refrigeration in rural areas where electricity was scarce. These systems, which used a mixture of ammonia and water, could lower the inside temperature to 43°F or less. Ice cubes actually could be made for a period of about 36 hours, depending on the room temperature. These machines would need periodic "recharging" by heating the system over a kerosene burner.

In 1939, the Copeland Company introduced the first successful semihermetic (Copelametic) field-serviceable

compressor. Three engineering changes made these compressors successful:

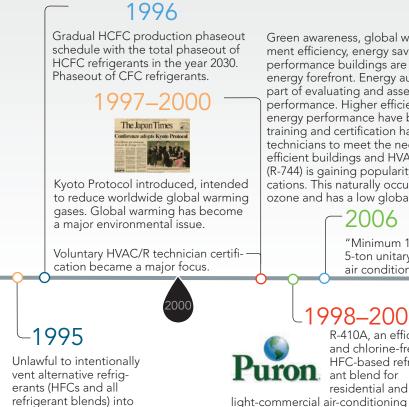

- 1. Cloth-insulated motor windings were replaced with Glyptal insulation.
- 2. Neoprene insulation replaced porcelain enamel in the electric terminals.
- 3. Valves were redesigned to improve efficiency.

Many different refrigerants have been developed over the years. The refrigerant R-12, a chlorofluorocarbon (CFC), was developed in 1931 by Thomas Midgley of Ethyl Corporation and C. F. Kettering of General Motors. It was produced by DuPont. In 1974, two professors from the University of California, Sherwood Rowland and Mario Molina, presented the "ozone theory." Their hypothesis was that CFC refrigerants released into the atmosphere were depleting the earth's protective ozone layer. Scientists conducted high-altitude studies and concluded that CFCs were indeed linked to ozone depletion. Representatives from the United States, Canada, and more than 30 other countries met in Montreal, Canada, in September, 1987, to try to solve the problem of released refrigerants and the effect they had on ozone depletion. This meeting produced the Montreal Protocol, which by 1989 had been ratified by 100 nations. It mandated a global freeze on the production of CFCs at 1986 levels. The Protocol also froze production

of hydrochlorofluorocarbon (HCFC) refrigerants at their 1986 levels, beginning in 1992. In addition, the Protocol set a schedule of taxes on CFC refrigerants. As research on ozone depletion continues today, reassessments and updates to the Montreal Protocol also continue. At the time of this writing, the most current updates are as follows:

- 1990 (November)—President George H. W. Bush signed the Clean Air Act amendments that initiated production freezes and bans on certain refrigerants.
- 1992 (July)—The EPA made it against the law to intentionally vent CFC and HCFC refrigerants into the atmosphere.
- 1993—The EPA mandated the recycling of CFC and HCFC refrigerants.
- 1994 (November)—The EPA mandated a technician certification program deadline. Current HVAC/R technicians had to be EPA-certified by this date.
- 1995 (November)—The EPA made it against the law to intentionally vent alternative refrigerants (HFCs and all refrigerant blends) into the atmosphere.
- 1996—The EPA made it illegal to manufacture or import CFC refrigerants.
- 1996—The EPA put into place a gradual HCFC production phaseout schedule, which will totally phase out the production of HCFC refrigerants by the year 2030.

TIME LINE


- 1998 (June)—The EPA proposed new regulations on recovery/recycling standards, equipment leak rates, and alternative refrigerants.
- 2004—35% reduction in HCFC refrigerant production.
- 2007-HCFC reduction on production was accelerated from 65% to 75% from the baseline 1989 production year.
- 2010—HCFC-22 is banned in new equipment. No production or importing of HCFC-22 and HCFC-142b, except for use in equipment manufactured before January 1, 2010.
- 2015-90% reduction in HCFC-22 production from the baseline production year of 1989. No production or importing of any HCFC, except for use in equipment manufactured before January 1, 2010.
- 2020-Total ban on HCFC-22 production. No production and no importing of R-22 and R-142b.
- 2030-Total ban on all HCFC production. No production and no importing of any HCFC.

From 1997 to 2000, voluntary HVAC/R technician certification became a major focus of the industry. From 1998 to the present, the major players in voluntary HVAC/R technician certification and home-study examinations were, and continue to be, the AC&R Safety Coalition, the Air Conditioning, Heating, and Refrigeration Institute (AHRI), the Heating, Air Conditioning, and Refrigeration Distributors International (HARDI), the Carbon Monoxide Safety

Association (COSA), the Green Mechanical Council, HVAC Excellence, North American Technician Excellence (NATE), the Refrigeration Service Engineers Society (RSES), and the United Association of Journeymen and Apprentices (UA).

By 2008, global warming had become a major environmental issue. A scoring system was designed to help engineers, contractors, and consumers know the "green value" of each mechanical installation. R-410A, an efficient and chlorine-free HFC-based refrigerant blend for residential and light-commercial air-conditioning applications was developed for use with the scroll compressor for greater efficiencies. Also today, every central split cooling system manufactured in the United States must have a Seasonal Energy Efficiency Ratio (SEER) rating of at least 13. This energy requirement was mandated by federal law as of January 23, 2006. The "green value" encompasses the system's energy efficiency, pollution output, and sustainability. Green buildings and green mechanical systems are becoming increasingly popular in today's world as a way to curb global warming.

Green awareness, global warming, energy efficiency, energy savings, sustainability, and high-performance buildings are still at the forefront of environmental and energy concerns. Energy audits have become an integral part of evaluating and assessing the energy performance of existing buildings. Higher efficiency standards for the performance of new buildings have been established.

the atmosphere as of

November, 1995.

2008-2014 -

Green awareness, global warming, energy efficiency, equipment efficiency, energy savings, sustainability and high performance buildings are still on the environmental and energy forefront. Energy audits have become an integral part of evaluating and assessing existing building's energy performance. Higher efficiency standards for new building's energy performance have been established. Higher levels of training and certification have been developed for HVAC/R technicians to meet the needs of more sophisticated, energyefficient buildings and HVAC/R equipment. Carbon Dioxide (R-744) is gaining popularity in commercial refrigeration applications. This naturally occurring refrigerant does not deplete ozone and has a low global warming potential (GWP).

2006

1998-2005

ant blend for

applications, is used with the scroll

compressor for greater efficiencies.

residential and

R-410A, an efficient

HFC-based refriger-

and chlorine-free

"Minimum 13 SEER" required for 1 1/2- to 5-ton unitary equipment and split/ packaged air conditioners and heat pumps.

> "Green awareness"-Green mechanical systems and green buildings become increasingly popular as a way to curb global warming and conserve energy. Natural refrigerants like carbon dioxide, ammonia, propane, butane, and isobutane are becoming increasingly popular because of their low GWP, zero ODP, low costs, availability, and high efficiencies.

2015-2016-

The SMART revolution is taking hold where wireless technology, applications (Apps), smart phones, notebooks, and pads, are controlling and monitoring HVACR equipment through wireless networks. Cloud computing is also becoming very popular.

GREEN AWARENESS

As mentioned, global warming stemming from the uncontrolled rate of greenhouse gas emissions is a major global environmental issue. Most of the sun's energy that reaches the earth is in the form of visible light. After passing through the atmosphere, part of this energy is absorbed by the earth's surface and is converted into heat energy. The earth, warmed by the sun, radiates heat energy back into the atmosphere toward space. Naturally occurring gases and lower atmospheric pollutants such as CFCs, HCFCs, HFCs, carbon dioxide, carbon monoxide, water vapor, and many other chemicals absorb, reflect, and/or refract the earth's infrared radiation and prevent it from escaping the lower atmosphere. Carbon dioxide, mainly from the burning of fossil fuels, is a major contributor to global-warming. The gases in the atmosphere slow the earth's heat loss, making the earth's surface warmer than it would be if heat energy had passed unobstructed through the atmosphere into space. The warmer earth's surface then radiates more heat until a balance is established between incoming and outgoing energy. This warming process is called global warming or the greenhouse effect. Humans are chiefly responsible for producing many of the greenhouse gases that are causing environmental problems.

Over 70% of the earth's fresh water supply is either in ice cap or glacier form. Scientists are concerned that these ice caps or glaciers will melt if the average earth temperature rises too much, thereby increasing ocean water levels. The scientific consensus is that we must limit the rise in global temperatures to less than 3.6°F (2°C) above preindustrial levels to avoid disastrous impacts. An increase of 2°C will likely displace millions of people from their homes due to rising water levels. Food production will decline, rivers will become too warm to support marine life, coral reefs will die, snow packs will decrease and threaten water supplies, weather will become unpredictable and extreme, and many plant and animal species will die and become extinct.

Nineteen of the hottest 20 years on record have occurred in the past 20 years [this information updated from multiple sources, including http://www.climate.gov/news-features /videos/2014-global-temperature-recap]. Atmospheric carbon dioxide levels are now at their highest. Half of the world's oil is gone and other natural resources are dwindling. The average American uses 142 gallons of water per day, and in some regions of the country, water supplies are drying up. Because of this, slowing, and possibly stopping or even reversing, the growth rate of greenhouse gas emissions has become a global effort.

Buildings are the major source of demand for energy and materials, and they are also the major source of greenhouse gases that are attributed to the by-products of energy use and materials. At the time of this writing, there are over 5 million commercial buildings and over 132 million housing units in the United States. Surprisingly, almost every one of their mechanical systems is obsolete. The global-warming scares, the rising price of fuels, the scarcity of clean water, and the ever-growing waste stream demand improvements in our homes and businesses today. Trained contractors, with the help of the government, installers, builders, manufacturers, and educators, must renovate and improve the efficiency of these buildings and mechanical systems.

In the United States, buildings account for approximately

- 36% of total energy used,
- 65% of electrical consumption,
- 30% of greenhouse gas emissions,
- 30% of raw materials used,
- 30% of waste output (136 millions tons annually), and
- 12% of potable water consumption.

Organizations like the Green Mechanical Council (GreenMech) and the United States Green Building Council (USGBC) are setting goals for the use of fewer fossil fuels in existing and new buildings. Some of these goals are listed here:

- All new buildings, developments, and major renovation projects must be designed to use one-half of the fossil-fuel energy they would typically consume.
- The fossil-fuel reduction standard for all new buildings must be increased to
 - ▶ 70% in 2015,
 - ▶ 80% in 2020, and
 - ▶ 90% in 2025.
- By 2030, new buildings must be carbon-neutral, which means that they cannot use any greenhouse-gas-emitting fossil-fuel energy to operate.
- Joint efforts must be made to change existing building standards and codes to reflect these targets.

Builders can accomplish these goals by choosing proper siting, building forms, glass properties and locations, and materials and by incorporating natural heating, cooling, ventilating, and lighting strategies. Renewable energy sources such as solar, wind, biomass, and other carbon-free methods can operate equipment within the building.

Leadership in Energy and Environmental Design (LEED) is a voluntary internationally recognized green building certification system for developing high-performance, sustainable buildings, which is referred to as the LEED Green Building Rating System. It was established by the USGBC in 1999 and is widely recognized as a third-party verification system and guideline for measuring what constitutes a green building. It was enhanced in 2009 and is currently operating under Version 3 of the rating system. All of the information for LEED ratings is available at http://www.usgbc.org/. Version 4 of the LEED program was scheduled to be put into effect in July 2015 and, at the time of this writing, the implementation of the new version is on schedule.

The USGBC membership, which is composed of every sector of the building industry and consists of over 9,000 organizations, developed and continues to refine LEED. LEED promotes expertise in green building by offering project certification, professional accreditation, and training. LEED emphasizes state-of-the-art strategies for sustainable site development, water savings, energy efficiency, material selection, and indoor environmental quality. According to the United Nations World Commission on Environment and Development, a sustainable design "meets the needs of the present without compromising the ability of future generations to meet their own needs." Companies looking to utilize green technologies or incorporate sustainable design into their buildings and facilities, are concerned with six areas:

- Optimizing site location
- Optimizing energy use
- Protecting and conserving water
- Using environmentally preferable products
- Enhancing indoor environmental quality
- Optimizing operational and maintenance practices

There are nine possible LEED rating categories, and each is assigned individual points for reaching accreditation. Listed here are the nine categories (separate rating systems) and possible points per categories.

Category	Points Possible
New Construction	110
Existing Buildings (Operation &	92
Maintenance)	
Commercial Interiors	110
Core & Shell	110
Schools	110
Retail	110
Healthcare	110
Homes	136
Neighborhood Development	110

Points are awarded in each category depending on how well the building meets the category's requirements. For example, the following information is taken from the New Construction (NC) LEED Rating System. Keep in mind that each system has different point-generation possibilities. The LEED NC system requires that a building earn a minimum of 40 points to meet minimum requirements out of a possible 110 points. There are four levels of certification according to the point system:

Certified	40–49
Silver	50-59
Gold	60–79
Platinum	80-110

A LEED NC certified building means that it has achieved at least a minimum standard as judged in the following seven categories prior to any points being awarded toward a LEED rating.

Category	Points Possible	
Sustainable Sites		
Water Efficiency	10	
Energy & Atmosphere	35	
Materials & Resources	14	
Indoor Environmental Quality	15	
Innovation & Design Process	6	
Regional Priority Credits	4	
	110	

The Energy & Atmosphere category has a possible 35 points, with potentially 33 of them directly linked to HVAC systems. This category for New Construction (NC) addresses such items as the facility's basic consumption of energy, its optimization of energy consumption, system commissioning and refrigerant management, and use of on-site renewable energy. Optimizing building facilities' performance can equate to a possible 19 out of 35 points. These points would equate to installing an HVAC system that improves efficiency by 48% for new construction or 44% for existing HVAC systems and constitute a large portion of the possible points, which provides opportunities in building renovation.

The Indoor Environmental Quality category has a possible 15 points, with potentially 7 of them directly linked to HVAC systems. This category has multiple possibilities: HVAC systems can affect outdoor air-delivery monitoring of facility ventilation, minimum air changes in buildings for removing harmful volatile organic compounds (VOCs), electronic thermal control systems, and thermal comfort design and verification.

In summary, the purpose of LEED is to provide a third-party certification process using nationally developed and accepted minimum standards for the construction industry. It affects the design, construction, and operation phases of high-performance "green" buildings. LEED systems take into account other ways of increasing efficiencies, such as water conservation, heat island reduction in urban areas, incentives for use of locally manufactured materials, site preparation, and maintenance as well as the HVAC efficiencies listed above. To receive a LEED rating, the facility must be built by a team, some of whose members are LEED accredited professionals. LEED-rated projects have a higher cost than similar, non-LEED projects because the enhancements required to increase efficiencies and the certification and documentation required cost more. Many European nations have made LEED-type systems mandatory for all buildings and have instituted existing-building rating systems that monitor yearly energy consumption of all utilities in these buildings. The higher a building's energy usage or "energy utilization index" above a minimum consumption, the higher amount of penalty tax the building owner must pay. This provides an incentive for improving the building's energy footprint.

The green awareness movement isn't just a temporary "buzzword" that will fade away with time. It is one that will be rapidly gaining momentum in the coming years. If contractors want to remain competitive, they must obtain the necessary training with regard to green building and LEED certification.

An alternative to LEED certification is the Green Globes[®] program, which is offered by the Green Building Initiative. The Green Globes program operates on a 1,000-point scale and certifications range from one to four Green Globes, with four Green Globes being their highest possible rating. Both the LEED and Green Globes programs are nationally accepted.

HISTORY OF HOME AND COMMERCIAL HEATING

Human beings' first exposure to fire was probably when lightning or another natural occurrence, such as a volcanic eruption, ignited forests or grasslands. After overcoming the fear of fire, early humans found that placing a controlled fire in a cave or other shelter could create a more comfortable living environment. Fire was often carried from one place to another. Smoke was always a problem, however, and methods needed to be developed for venting it outside. Native Americans, for example, learned in later years to vent smoke through holes at the peak of their tepees, and some of these vents were constructed with a vane that could be adjusted to prevent downdrafts. The fireplaces common in Europe and North America were vented through chimneys.

Early stoves were found to be more efficient than fireplaces. These early stoves were constructed of a type of firebrick, ceramic materials, or iron. In the mid-eighteenth century, a jacket for the stove and a duct system were developed. The stove could then be located at the lowest place in a structure, and the heated air in the jacket around the stove would rise through a duct system and grates into the living area. This was the beginning of the development of circulating warm-air heating systems.

Boilers that heated water were also developed, and this water was circulated through pipes in duct systems. The water heated the air around the pipes, and the heated air passed into the rooms to be heated. Radiators were then developed. The heated water circulated by convection through the pipes to the radiators, and heat was passed into the room by radiation. These early systems were forerunners of modern hydronic heating systems.

Steam heat became a popular heating option at the beginning of the nineteenth century and coal was the fuel of choice for boilers. Coal was desirable because it burned hot and lasted a long time. But coal was not inexpensive and the coal dust that was ever-present resulted in health, primarily breathing, problems for many people. In the late 1920s, the oil burner was invented and was a very attractive alternative to coal. Oil was less expensive and cleaner than coal and nobody had to keep feeding coal to keep the fire burning.

Oil remained popular, and inexpensive, until the Arab oil embargo of 1973 and the Iranian Revolution in 1979. Oil prices spiked and people had to wait in lines, sometimes for hours, to get their ration of fuel for their cars. As a result, many people switched to natural gas, comprised primarily of methane. Natural gas boilers began to replace the old oil boilers, just as oil had replaced coal.

After the price shocks of the 1970s, oil prices stayed low for most of the 1980s and 1990s, with occasional moderate peaks. Oil prices then rose steadily from the period between September 11, 2001 and 2009, and continue to fluctuate today.

Today, commercial and residential heating needs are being met in a number of ways that include traditional hot water and steam, but new, more efficient technologies are becoming more attractive. These include radiant heating, radiant cooling, and geothermal heat pump systems.

CAREER OPPORTUNITIES

The HVAC/R industry is rapidly changing due to advancements in technology being spurred on by the need for increased energy efficiencies. The career opportunities available in HVAC/R for those who have acquired formal technical training coupled with field experience are unlimited. Schools that provide excellent technical training in the field are becoming easier to identify through HVAC/R program accreditation. As new equipment becomes more technically challenging and the existing workforce continues to age, the employment positions available will continue to outnumber applicants for the foreseeable future. This shortfall in available, competent HVAC/R service technicians is being addressed through the cooperative efforts of educational institutions, labor unions, employers, and manufacturers. Many organizations offer apprenticeship opportunities that can lead to high-income positions. Manufacturers are also teaming up with select educational institutions across North America to help develop the next generation of HVAC/R technicians.

Many newer buildings are constructed so tightly that the quality of the air must be controlled by specialized equipment. The conditions of the air must also be carefully controlled in areas that perform manufacturing processes. Heating and airconditioning systems control the temperature, humidity, and total air quality in residential, commercial, industrial, and other types of buildings. Refrigeration systems are used to store and transport food, medicine, and other perishable items. Refrigeration and air-conditioning technicians design, sell, install, or maintain these systems. Many contractors and service companies specialize in commercial refrigeration. The installation and service technicians employed by these companies install and service refrigeration equipment in supermarkets, restaurants, hotels/motels, flower shops, and many other types of retail and wholesale commercial businesses.

Other contractors and service companies may specialize in air-conditioning. Many specialize in residential-only or commercial-only installation and service; others may install and service both residential and commercial equipment up to a specific size. Air-conditioning may include cooling, heating, humidifying, dehumidifying, ventilating, exhausting, and air cleaning. Heating equipment may rely on fossils fuels, such as natural gas, liquefied petroleum, or oil, or may be configured as electric-based or heat pump systems. The type and number of installations will vary from one part of the country to another, depending on the climate and availability of the heat source. The heating equipment may be either a furnace (which heats air) or a boiler (which heats water). The boiler heats water and pumps it to the space to be heated, where one of many types of heat exchangers transfers the heat to the air.

Technicians may specialize in installation or service of equipment, or they may be involved with both. Other technicians may design installations or work in the sales area. Sales representatives may be in the field selling equipment to contractors, businesses, or homeowners; others may work in wholesale supply stores. Still other technicians may represent manufacturers, selling equipment to wholesalers and large contractors.

Many opportunities exist for technicians to be employed in the industry or by companies owning large buildings. Technicians may be responsible for the operation of airconditioning equipment, or they may be involved in the service of this equipment. Opportunities also exist for employment in servicing household refrigeration and room air conditioners, which would include refrigerators, freezers, and window or through-the-wall air conditioners. Opportunities are also available for employment in a field often called transport refrigeration. This includes servicing refrigeration equipment on trucks or on large containers hauled by trucks and ships.

Most modern houses and other buildings are constructed to keep outside air from entering, except through planned ventilation. Consequently, the same air is circulated through the building many times. The quality of this air may eventually cause a health problem for people spending many hours in the building. This indoor air quality (IAQ) presents another opportunity for employment in the air-conditioning field. Technicians clean filters and ducts, take air measurements, check ventilation systems, and perform other tasks to help ensure healthy air quality. Other technicians work for manufacturers of air-conditioning equipment. These technicians may be employed to assist in equipment design, in the manufacturing process, or as equipment salespersons.

Following is a list of many career opportunities in the HVAC/R field:

- Field service technician
- Service manager
- Field supervisor
- Field installer
- Journeyman
- Project manager
- Job foreman
- Application engineer
- Controls technician
- Draftsperson
- Contractor
- Lab technician

- Inspector
- Facilities technician
- Instructor
- Educational administrator
- Inside/outside sales rep
- Sales manager
- New product developer
- Research engineer
- Estimator

TECHNICIAN CERTIFICATION PROGRAMS

HISTORY

Even though mandatory technician certification programs are in place today, the EPA originally did not consider them as its lead option. As a matter of fact, the EPA initially thought private incentives would ensure that technicians were properly trained in refrigerant recycling and recovery. The EPA also stated that it would play an important role through a voluntary technician certification program by recognizing those who provide and participate in voluntary technician training programs that meet certain minimum standards. The EPA also thought that a mandatory certification program would be an administrative burden. The EPA then requested public comments on a mandatory versus voluntary technician certification program. More than 18,000 comments were in favor of a mandatory program, and only 142 were in favor of a voluntary program. Most of the 18,000 in favor of the mandatory certification program were major trade organizations and technicians themselves. Manufacturers of recovery and recycling equipment, along with environmental organizations, also supported mandatory certification. They believed it would increase compliance with venting, recovery, and recycling laws and the general safe handling of refrigerants. The following were reasons given by those favoring mandatory technician certification:

- Improve refrigerant leak detection techniques
- Promote awareness of problems relating to venting, recovery, and recycling of refrigerants
- Improve productivity and cost savings through proper maintenance practices
- Ensure environmentally safe service practices
- Gain more consumer trust
- Receive more liability protection
- Ensure that equipment is properly maintained
- Educate technicians on how to effectively contain and conserve refrigerants
- Create uniform and enforceable laws
- Foster more fair competition in the regulated community

With these comments in mind, the EPA decided that mandatory technician certification would increase fairness by ensuring that all technicians were complying with today's rules. The EPA